当前位置: 首页 > news >正文

llamafactory SFT 从断点恢复训练

背景

在这里插入图片描述

我使用llamafactory sft 微调模型的时候。gpu停止运行了。日志文件没有任何的报错信息。
显存还是占用状态。

查看llamafactory的进程是下述信息:
151312 151306 91 17:42 ? 03:58:10 [llamafactory-cl]

既然如此,那就只能从断点恢复训练了。

这里是 GitHub 仓库对应的 issues: https://github.com/hiyouga/LLaMA-Factory/issues/1713

在这里插入图片描述

断点重启

如果只是恢复一个模型的训练,手动修改 resume_from_checkpoint 参数:

llamafactory-cli train \--resume_from_checkpoint ${save_path}/${resume_from_checkpoint} \--stage sft \--do_train True \--model_name_or_path ${model_name_or_path} \--preprocessing_num_workers 16 \--finetuning_type lora \--template $template \--flash_attn auto \--dataset_dir $dataset_dir \--dataset $alpaca_dataset_name \--cutoff_len 2048 \--learning_rate 2e-05 \--num_train_epochs 2.0 \--per_device_train_batch_size 2 \--gradient_accumulation_steps 4 \--lr_scheduler_type cosine \--max_grad_norm 1.0 \--logging_steps 5 \--save_steps 100 \--warmup_steps 100 \--packing False \--report_to none \--output_dir ${save_path} \--fp16 True \--plot_loss True \--trust_remote_code True \--ddp_timeout 180000000 \--include_num_input_tokens_seen True \--optim adamw_torch \--lora_rank 16 \--lora_alpha 32 \--lora_dropout 0 \--lora_target all \--val_size 0.1 \--eval_strategy steps \--eval_steps 100 \--per_device_eval_batch_size 1 >${log_dir}/sft.log 2>&1

但我想使用 shell 脚本,自动地从断点恢复训练,减轻手动负担:

下述脚本可以找到当前文件夹,最大的checkpoint文件夹:

# 检查 all_results.json 是否不存在,同时 trainer_log.jsonl 是否存在
if [ ! -f "all_results.json" ] && [ -f "trainer_log.jsonl" ]; then# 找出所有 checkpoint-数字 的文件夹,并提取最大的编号max_folder=$(ls -d checkpoint-*/ 2>/dev/null | awk -F '-' '{print $2}' | sort -n | tail -1)if [ -n "$max_folder" ]; thenecho "最大的 checkpoint 文件夹是: checkpoint-$max_folder"elseecho "没有找到任何 checkpoint 文件夹"fi
elseecho "条件不满足:all_results.json 存在 或 trainer_log.jsonl 不存在"
fi

下述是一个自动加载checkpoint,恢复训练的shell脚本:

resume_from_checkpoint=None# 检查 all_results.json 不存在,同时 trainer_log.jsonl 存在,代表模型没有训练完成就退出了
if [ ! -f "${save_path}/all_results.json" ] && [ -f "${save_path}/trainer_log.jsonl" ]; then# 找出所有 checkpoint-数字 的文件夹,并提取最大的编号max_folder=$(ls -d ${save_path}/checkpoint-*/ 2>/dev/null | awk -F '-' '{print $2}' | sort -n | tail -1)if [ -n "${max_folder}" ]; thenecho "最大的 checkpoint 文件夹是: checkpoint-${max_folder}"resume_from_checkpoint=checkpoint-${max_folder}fi
elseecho "模型可能微调完成,退出微调"
fiecho "resume_from_checkpoint: ${resume_from_checkpoint}"if [ -f "${save_path}/all_results.json" ]; thenecho "${save_path}/trainer_log.jsonl, just skip sft"
elsellamafactory-cli train \--resume_from_checkpoint ${save_path}/${resume_from_checkpoint} \--stage sft \--do_train True \--model_name_or_path ${model_name_or_path} \--preprocessing_num_workers 16 \--finetuning_type lora \--template $template \--flash_attn auto \--dataset_dir $dataset_dir \--dataset $alpaca_dataset_name \--cutoff_len 2048 \--learning_rate 2e-05 \--num_train_epochs 2.0 \--per_device_train_batch_size 2 \--gradient_accumulation_steps 4 \--lr_scheduler_type cosine \--max_grad_norm 1.0 \--logging_steps 5 \--save_steps 100 \--warmup_steps 100 \--packing False \--report_to none \--output_dir ${save_path} \--fp16 True \--plot_loss True \--trust_remote_code True \--ddp_timeout 180000000 \--include_num_input_tokens_seen True \--optim adamw_torch \--lora_rank 16 \--lora_alpha 32 \--lora_dropout 0 \--lora_target all \--val_size 0.1 \--eval_strategy steps \--eval_steps 100 \--per_device_eval_batch_size 1 >${log_dir}/sft.log 2>&1echo "lora finish save at ${save_path}"
fi

运行脚本后恢复训练,日志文件信息如下:

[INFO|trainer.py:748] 2025-05-16 21:51:23,017 >> Using auto half precision backend
[INFO|trainer.py:2813] 2025-05-16 21:51:23,018 >> Loading model from /mnt/mydisk/github/papers/plan_agent_rag/answer_learn/many_datasets/wiki_mqa/llama3/output/saves/lora//checkpoint-300/.
[INFO|trainer.py:2414] 2025-05-16 21:51:28,423 >> ***** Running training *****
[INFO|trainer.py:2415] 2025-05-16 21:51:28,423 >>   Num examples = 3,591
[INFO|trainer.py:2416] 2025-05-16 21:51:28,423 >>   Num Epochs = 2
[INFO|trainer.py:2417] 2025-05-16 21:51:28,423 >>   Instantaneous batch size per device = 2
[INFO|trainer.py:2420] 2025-05-16 21:51:28,423 >>   Total train batch size (w. parallel, distributed & accumulation) = 8
[INFO|trainer.py:2421] 2025-05-16 21:51:28,423 >>   Gradient Accumulation steps = 4
[INFO|trainer.py:2422] 2025-05-16 21:51:28,423 >>   Total optimization steps = 898
[INFO|trainer.py:2423] 2025-05-16 21:51:28,425 >>   Number of trainable parameters = 41,943,040
[INFO|trainer.py:2445] 2025-05-16 21:51:28,425 >>   Continuing training from checkpoint, will skip to saved global_step
[INFO|trainer.py:2446] 2025-05-16 21:51:28,425 >>   Continuing training from epoch 0
[INFO|trainer.py:2447] 2025-05-16 21:51:28,425 >>   Continuing training from global step 300
[INFO|trainer.py:2449] 2025-05-16 21:51:28,425 >>   Will skip the first 0 epochs then the first 1200 batches in the first epoch.0%|          | 0/898 [00:00<?, ?it/s]34%|███▎      | 301/898 [00:08<00:17, 34.10it/s]34%|███▎      | 302/898 [00:22<00:17, 34.10it/s]34%|███▎      | 303/898 [00:24<01:00,  9.90it/s]34%|███▍      | 304/898 [00:31<01:28,  6.69it/s]

脚本中可能有一些本地文件、日志保存的变量,请大家忽略掉!

http://www.xdnf.cn/news/476479.html

相关文章:

  • 论文阅读:Self-Collaboration Code Generation via ChatGPT
  • uniapp-商城-58-后台 新增商品(属性子级的添加和更新)
  • Axure设计的“广东省网络信息化大数据平台”数据可视化大屏
  • 基于大模型预测的脑出血全流程诊疗技术方案
  • IDEA:程序编译报错:java: Compilation failed: internal java compiler error
  • Java 使用 PDFBox 提取 PDF 文本并统计关键词出现次数(附Demo)
  • uniapp-商城-59-后台 新增商品(属性的选中,进行过滤展示,filter,some,every和map)
  • 深入解析VPN技术原理:安全网络的护航者
  • 金融问答系统:如何用大语言模型打造高精度合规的金融知识引擎
  • math toolkit for real-time development读书笔记一-三角函数快速计算(1)
  • Oracle 批量操作脚本解析:动态执行与分批次删除
  • STM32就业前景和下载KEIL软件(保姆级)
  • MongoDB分片集群
  • 自定义快捷键软件:AutoHotkey 高效的快捷键执行脚本软件
  • Deeper and Wider Siamese Networks for Real-Time Visual Tracking
  • 香港 GPU 服务器优势及使用场景解析
  • 灌区量测水自动化监测解决方案
  • Git基础使用方法与命令总结
  • MySQL的缓存策略
  • C# 面向对象 构造函数带参无参细节解析
  • 巧记英语四级单词 Unit8-上【晓艳老师版】
  • Android minSdk从21升级24后SO库异常
  • 【Android构建系统】如何在Camera Hal的Android.bp中选择性引用某个模块
  • Springboot 异步场景 使用注解 @Async 及 自定义线程池分模块使用
  • 一分钟了解机器学习
  • 专业版降重指南:如何用Python批量替换同义词?自动化操作不香嘛?
  • STM32 ADC+DMA+TIM触发采样实战:避坑指南与源码解析
  • 宇宙中是否存在量子现象?
  • Jenkins的流水线执行shell脚本执行jar命令后项目未启动未输出日志问题处理
  • #跟着若城学鸿蒙# web篇-运动和方向传感器监测