目录
- 一、系统架构设计
-
- 二、核心算法实现
- 1. 多模态数据融合算法伪代码
- 2. 风险预测模型实现
- 三、关键模块流程图
- 1. 术前风险预测流程图
- 2. 术中决策支持流程图
- 3. 并发症预测防控流程图
- 四、系统集成方案
-
- 五、性能优化策略
-
- 六、安全与合规
-
- 七、部署方案
-
- 八、验证与评估
-
一、系统架构设计
技术架构图
二、核心算法实现
1. 多模态数据融合算法伪代码
class MultiModalDataFusion:def __init__(self):self.text_encoder = BioClinicalBERT() self.image_processor = MedicalImageNet() self.time_series_model = TemporalConvNet() def fuse_data(self, patient_record):text_features = self.text_encoder.encode(patient_record.clinical_notes)image_features = self.image_processor.extract_features(patient_record.ct_scan)ts_features = self.time_series_model.process(patient_record.vital_signs)fused_features = self._attention_fusion(text_features, image_features, ts_features)return fused_featuresdef _attention_fusion(self, *features):attention_weights = calculate_attention_scores(features)weighted_features = apply_attention_weights(features, attention_weights)return concatenate_features(weighted_features)
2. 风险预测模型实现
class RiskPredictionModel(nn.Module):def __init__(self, input_dim, hidden_dim, output_dim):super(RiskPredictionModel, self).__init__()self.transformer = TransformerEncoder(input_dim, hidden_dim)self.attention = SelfAttention(hidden_dim)self.classifier = nn.Sequential(nn.Linear(hidden_dim, 64),nn.ReLU(),nn.Dropout(0.5),nn.Linear(64, output_dim))def forward(self, x):encoded = self.transformer(x)attended = self.attention(encoded)output = self.classifier(attended)return F.softmax(output, dim=1)
三、关键模块流程图
1. 术前风险预测流程图