数学分析原理答案——第七章 习题13
【第七章 习题13】
假设{fn}\left\{ f_{n} \right\}{fn}是R1R^{1}R1上单调递增的函数序列,对于一切xxx和一切nnn,
0≤fn(x)≤10 \leq f_{n}(x) \leq 10≤fn(x)≤1
(a) 试证存在一个函数fff和一个序列{nk}\left\{ n_{k} \right\}{nk},能对每个x∈R1x \in R^{1}x∈R1,使得
f(x)=limk→∞fnk(x)f(x) = \lim_{k \rightarrow \infty}{f_{n_{k}}(x)}f(x)=k→∞limfnk(x)
(b) 如果前面的fff还满足连续的特性,试证在R1R^{1}R1上fnk→ff_{n_{k}} \rightarrow ffnk→f是一致的。
【解】
(a) 所有有理数的集QQQ在R1R^{1}R1中稠密,且个数可数。根据定理7.23可知,存在一个序列(ni)\left( n_{i} \right)(ni)和函数使得
∀x∈Q g(x)=limi→∞fni(x)\forall x \in Q\ g(x) = \lim_{i \rightarrow \infty}{f_{n_{i}}(x)}∀x∈Q g(x)=i→∞limfni(x)
对于无理数点,定义
∀x∉Q g(x)=sup(g(y)) 其中y<x∧y∈Q\forall x \notin Q\ g(x) = \sup\left( g(y) \right)\ \ \ \ \ 其中y < x \land y \in Q∀x∈/Q g(x)=sup(g(y)) 其中y<x∧y∈Q
下面证明,若x0∉Qx_{0} \notin Qx0∈/Q并且g(x)g(x)g(x)在x0x_{0}x0处连续,也满足
limi→∞fni(x0)=g(x0)\lim_{i \rightarrow \infty}{f_{n_{i}}\left( x_{0} \right)} = g\left( x_{0} \right)i→∞limfni(x0)=g(x0)
首先,根据g(x)g(x)g(x)在x0x_{0}x0处连续,可以构造两个有理数序列(pj)、(qj)\left( p_{j} \right)、\left( q_{j} \right)(pj)、(qj),满足
limj→∞pj=limj→∞qj=x0\lim_{j \rightarrow \infty}p_{j} = \lim_{j \rightarrow \infty}q_{j} = x_{0}j→∞limpj=j→∞limqj=x0
pj<x0<qjp_{j} < x_{0} < q_{j}pj<x0<qj
对于任意的pj、qjp_{j}、q_{j}pj、qj,都有
g(pj)=limi→∞fni(pj)≤limi→∞fni(x0)≤limi→∞fni(qj)=g(qj)g\left( p_{j} \right) = \lim_{i \rightarrow \infty}{f_{n_{i}}\left( p_{j} \right)} \leq \lim_{i \rightarrow \infty}{f_{n_{i}}\left( x_{0} \right)} \leq \lim_{i \rightarrow \infty}{f_{n_{i}}\left( q_{j} \right)} = g\left( q_{j} \right)g(pj)=i→∞limfni(pj)≤i→∞limfni(x0)≤i→∞limfni(qj)=g(qj)
所以
limj→∞g(pj)≤limi→∞fni(x0)≤limj→∞g(qj)\lim_{j \rightarrow \infty}{g\left( p_{j} \right)} \leq \lim_{i \rightarrow \infty}{f_{n_{i}}\left( x_{0} \right)} \leq \lim_{j \rightarrow \infty}{g\left( q_{j} \right)}j→∞limg(pj)≤i→∞limfni(x0)≤j→∞limg(qj)
又因为g(x)g(x)g(x)在x0x_{0}x0处连续,可得
limj→∞g(pj)=limx→x0−g(x)=g(x0)=limx→x0+g(x)=limj→∞g(qj)\lim_{j \rightarrow \infty}{g\left( p_{j} \right)} = \lim_{x \rightarrow x_{0}^{-}}{g(x)} = g\left( x_{0} \right) = \lim_{x \rightarrow x_{0}^{+}}{g(x)} = \lim_{j \rightarrow \infty}{g\left( q_{j} \right)}j→∞limg(pj)=x→x0−limg(x)=g(x0)=x→x0+limg(x)=j→∞limg(qj)
所以
limi→∞fni(x0)=g(x0)\lim_{i \rightarrow \infty}{f_{n_{i}}\left( x_{0} \right)} = g\left( x_{0} \right)i→∞limfni(x0)=g(x0)
也就是说,g(x)g(x)g(x)在所有连续点满足
g(x)=limi→∞fni(x)g(x) = \lim_{i \rightarrow \infty}{f_{n_{i}}(x)}g(x)=i→∞limfni(x)
下面构造(nk)、f(x)\left( n_{k} \right)、f(x)(nk)、f(x),使得f(x)f(x)f(x)在所有实数点xxx满足
f(x)=limk→∞fnk(x)f(x) = \lim_{k \rightarrow \infty}{f_{n_{k}}(x)}f(x)=k→∞limfnk(x)
由于g(x)g(x)g(x)单调递增(因为{fn}\left\{ f_{n} \right\}{fn}单调递增,利用反证法,g(x)g(x)g(x)在有理数点必然单调递增,同时g(x)g(x)g(x)在无理数点的函数值是最小上界原理取得)、并且间断点个数可数(因为g(x)g(x)g(x)的间断点都是第一类间断点,不同的间断点都对应不同的一个有理数),再次利用定理7.23可从函数序列(fni(x))\left( f_{n_{i}}(x) \right)(fni(x))中构造一个子序列(fnk(x))\left( f_{n_{k}}(x) \right)(fnk(x))和函数f(x)f(x)f(x),满足
f(x)=limk→∞fnk(x)f(x) = \lim_{k \rightarrow \infty}{f_{n_{k}}(x)}f(x)=k→∞limfnk(x)
(b) 若fff连续,那么fff在R1R^{1}R1上单调递增,并且满足
0≤f≤10 \leq f \leq 10≤f≤1
将值域(此处一定是值域,因为定义域R1R^{1}R1不是紧集!)均匀分割R1R^{1}R1成lll份,可以得到有限个闭区间
x0<x1<x2<…<xlx_{0} < x_{1} < x_{2} < \ldots < x_{l}x0<x1<x2<…<xl
[-∞=x0,x1]、[x1,x2]、[x2,x3]…[xl−1,xl=+∞]\left\lbrack \text{-}\infty = x_{0},x_{1} \right\rbrack 、\left\lbrack x_{1},x_{2} \right\rbrack 、\left\lbrack x_{2},x_{3} \right\rbrack\ldots\lbrack x_{l - 1},x_{l} = + \infty\rbrack[-∞=x0,x1]、[x1,x2]、[x2,x3]…[xl−1,xl=+∞]
满足
∣f(xi)−f(xi+1)∣≤1l\left| f\left( x_{i} \right) - f\left( x_{i + 1} \right) \right| \leq \frac{1}{l}∣f(xi)−f(xi+1)∣≤l1
对于任意ε>0\varepsilon > 0ε>0,适当调整份数,可使
∣f(xi)−f(xi+1)∣≤1l<ε\left| f\left( x_{i} \right) - f\left( x_{i + 1} \right) \right| \leq \frac{1}{l} < \varepsilon∣f(xi)−f(xi+1)∣≤l1<ε
由于函数序列fnk(x)f_{n_{k}}(x)fnk(x)逐点收敛于f(x)f(x)f(x),所以当nnn足够大时
∀1≤i≤l ∣fnk(xi)−f(xi)∣<ε\forall 1 \leq i \leq l\ \ \ \left| f_{n_{k}}\left( x_{i} \right) - f\left( x_{i} \right) \right| < \varepsilon∀1≤i≤l ∣fnk(xi)−f(xi)∣<ε
区间[xi,xi+1]\left\lbrack x_{i},x_{i + 1} \right\rbrack[xi,xi+1]上的所有函数值满足(下面的max\maxmax取决于fnk(x)、f(x)f_{n_{k}}\left( x \right)、f\left( x \right)fnk(x)、f(x)两者谁更大)
∣fnk(x)−f(x)∣≤max[∣fnk(xi+1)−f(xi)∣,∣f(xi+1)−fnk(xi)∣]≤∣fnk(xi+1)−f(xi)∣+∣f(xi+1)−fnk(xi)∣=∣fnk(xi+1)−f(xi+1)∣+∣f(xi)−f(xi+1)∣+∣f(xi+1)−fnk(xi+1)∣+∣f(xi+1)−f(xi)∣=4ε{\left| f_{n_{k}}(x) - f(x) \right| }{\leq \max\left\lbrack \left| f_{n_{k}}\left( x_{i + 1} \right) - f\left( x_{i} \right) \right|,\left| f\left( x_{i + 1} \right) - f_{n_{k}}\left( x_{i} \right) \right| \right\rbrack }{\leq \left| f_{n_{k}}\left( x_{i + 1} \right) - f\left( x_{i} \right) \right| + \left| f\left( x_{i + 1} \right) - f_{n_{k}}\left( x_{i} \right) \right| }{= \left| f_{n_{k}}\left( x_{i + 1} \right) - f\left( x_{i + 1} \right) \right| + \left| f\left( x_{i} \right) - f\left( x_{i + 1} \right) \right| + \left| f\left( x_{i + 1} \right) - f_{n_{k}}\left( x_{i + 1} \right) \right| + \left| f\left( x_{i + 1} \right) - f\left( x_{i} \right) \right| }{= 4\varepsilon}∣fnk(x)−f(x)∣≤max[∣fnk(xi+1)−f(xi)∣,∣f(xi+1)−fnk(xi)∣]≤∣fnk(xi+1)−f(xi)∣+∣f(xi+1)−fnk(xi)∣=∣fnk(xi+1)−f(xi+1)∣+∣f(xi)−f(xi+1)∣+∣f(xi+1)−fnk(xi+1)∣+∣f(xi+1)−f(xi)∣=4ε
所以在R1R^{1}R1上fnk→ff_{n_{k}} \rightarrow ffnk→f是一致的。
沃尔特·鲁丁(Walter Rudin)所著《数学分析原理》中第七章
习题13的个人答案,仅供参考