当前位置: 首页 > news >正文

Python_day51

作业:

day43的时候我们安排大家对自己找的数据集用简单cnn训练,现在可以尝试下借助这几天的知识来实现精度的进一步提高

关于 Dataset

从谷歌图片中抓取了 1000 多张猫和狗的图片。问题陈述是构建一个模型,该模型可以尽可能准确地在图像中的猫和狗之间进行分类。

图像大小范围从大约 100x100 像素到 2000x1000 像素。

图像格式为 jpeg。

已删除重复项。

猫狗图像分类 

https://i-blog.csdnimg.cn/direct/e9afa2653aa74ecf9042321652063514.png

import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
from torch.utils.data import DataLoader# 设备设置
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')# CBAM 模块
class ChannelAttention(nn.Module):def __init__(self, in_planes, ratio=16):super(ChannelAttention, self).__init__()self.avg_pool = nn.AdaptiveAvgPool2d(1)self.max_pool = nn.AdaptiveMaxPool2d(1)self.fc1 = nn.Conv2d(in_planes, in_planes // ratio, 1, bias=False)self.relu1 = nn.ReLU()self.fc2 = nn.Conv2d(in_planes // ratio, in_planes, 1, bias=False)self.sigmoid = nn.Sigmoid()def forward(self, x):avg_out = self.fc2(self.relu1(self.fc1(self.avg_pool(x))))max_out = self.fc2(self.relu1(self.fc1(self.max_pool(x))))out = avg_out + max_outreturn self.sigmoid(out)class SpatialAttention(nn.Module):def __init__(self, kernel_size=7):super(SpatialAttention, self).__init__()assert kernel_size in (3, 7), 'kernel size must be 3 or 7'padding = 3 if kernel_size == 7 else 1self.conv1 = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False)self.sigmoid = nn.Sigmoid()def forward(self, x):avg_out = torch.mean(x, dim=1, keepdim=True)max_out, _ = torch.max(x, dim=1, keepdim=True)x = torch.cat([avg_out, max_out], dim=1)x = self.conv1(x)return self.sigmoid(x)# 基础 CNN 模型含 CBAM
class CNNWithCBAM(nn.Module):def __init__(self):super(CNNWithCBAM, self).__init__()self.conv1 = nn.Conv2d(3, 64, kernel_size=3, padding=1)self.bn1 = nn.BatchNorm2d(64)self.ca1 = ChannelAttention(64)self.sa1 = SpatialAttention()self.relu = nn.ReLU(inplace=True)self.pool = nn.MaxPool2d(2, 2)self.conv2 = nn.Conv2d(64, 128, kernel_size=3, padding=1)self.bn2 = nn.BatchNorm2d(128)self.ca2 = ChannelAttention(128)self.sa2 = SpatialAttention()self.fc1 = nn.Linear(128 * 8 * 8, 128)self.fc2 = nn.Linear(128, 10)def forward(self, x):x = self.relu(self.bn1(self.conv1(x)))x = self.ca1(x) * xx = self.sa1(x) * xx = self.pool(x)x = self.relu(self.bn2(self.conv2(x)))x = self.ca2(x) * xx = self.sa2(x) * xx = self.pool(x)x = x.view(-1, 128 * 8 * 8)x = self.relu(self.fc1(x))x = self.fc2(x)return x# 数据预处理
transform = transforms.Compose([transforms.RandomCrop(32, padding=4),transforms.RandomHorizontalFlip(),transforms.ToTensor(),transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])# 加载 CIFAR - 10 数据集
trainset = torchvision.datasets.CIFAR10(root='./data', train=True,download=True, transform=transform)
trainloader = DataLoader(trainset, batch_size=32, shuffle=True)testset = torchvision.datasets.CIFAR10(root='./data', train=False,download=True, transform=transform)
testloader = DataLoader(testset, batch_size=32, shuffle=False)# 初始化模型、损失函数和优化器
model = CNNWithCBAM().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)# 训练函数
def train(model, trainloader, criterion, optimizer, device, epochs):model.train()for epoch in range(epochs):running_loss = 0.0for i, data in enumerate(trainloader, 0):inputs, labels = data[0].to(device), data[1].to(device)optimizer.zero_grad()outputs = model(inputs)loss = criterion(outputs, labels)loss.backward()optimizer.step()running_loss += loss.item()print(f'Epoch {epoch + 1}, Loss: {running_loss / len(trainloader)}')# 评估函数
def evaluate(model, testloader, device):model.eval()correct = 0total = 0with torch.no_grad():for data in testloader:images, labels = data[0].to(device), data[1].to(device)outputs = model(images)_, predicted = torch.max(outputs.data, 1)total += labels.size(0)correct += (predicted == labels).sum().item()print(f'Accuracy of the network on the 10000 test images: {100 * correct / total} %')# 开始训练和评估
train(model, trainloader, criterion, optimizer, device, epochs=10)
evaluate(model, testloader, device)

@浙大疏锦行

http://www.xdnf.cn/news/989857.html

相关文章:

  • Future与CompletableFuture:异步编程对比
  • v4l2_subdev 与 /dev/videoX 的关联
  • Git不能更新以及提交代码,提示链接超时,本地凭证无问题
  • 6.11 MySQL面试题 日志 性能 架构
  • 深入理解TCP以及三次握手与四次挥手
  • 面对多个项目并行,协作机制如何建立?
  • Java 8 Stream 流详细教程 - 全面指南
  • 重塑未来的力量:人工智能的技术演进与产业变革
  • git的5种分支分别是干嘛的,git常用指令
  • git的常用方法
  • 交换机上抓包
  • 大模型与人工智能
  • 了解shell中的Fork炸弹
  • Java并发编程实战 Day 17:CompletableFuture高级应用
  • 种子音乐携手RBW 精心打造Solar颂乐首支中文单曲《Floating Free》
  • 单端的时钟阻抗设置为50欧姆,差分的时钟阻抗设置为100欧姆
  • echarts 地图 海南省全岛完整展示
  • Vuex 中Mutation 和Action介绍
  • Android SDK Manager 2025镜像,亲测好用
  • Windows为何总在不停更新补丁
  • EtherCAT转CANopen网关实现与伺服系统连通的配置实例探究
  • linux虚拟机磁盘容量不足?一个指令解决问题
  • 国内各种AI工具库
  • 大模型笔记_检索增强生成(RAG)
  • ABC 337
  • Arduino入门教程:0、课程介绍认识Arduino
  • 餐厅商家怎么做元宵节活动宣传海报?
  • C++ 精简知识点
  • 推荐算法介绍-基础算法
  • python打卡第49天