当前位置: 首页 > news >正文

【R语言编程绘图-函数篇】

基础函数绘制

R语言可通过curve()函数直接绘制数学函数图形,无需预先生成数据点。例如绘制正弦函数:

curve(sin, from = -pi, to = pi, col = "blue", lwd = 2)

自定义函数绘制

对于用户自定义函数,需先定义函数表达式:

my_function <- function(x) x^2 + 2*x + 1
curve(my_function, from = -5, to 5, n = 1000)

多函数叠加绘制

使用add = TRUE参数可在同一图形上叠加多个函数:

curve(sin, -pi, pi, col = "red")
curve(cos, -pi, pi, col = "blue", add = TRUE)

参数化函数绘制

处理含参数的函数时,可通过匿名函数传递参数:

a <- 2
curve(function(x) a*sin(x), 0, 2*pi)

离散点绘制法

对于无法用表达式表示的函数,可生成离散点后绘图:

x <- seq(-3, 3, length.out = 100)
y <- dnorm(x)  # 标准正态分布密度函数
plot(x, y, type = "l")

图形定制技巧

通过图形参数增强可视化效果:

curve(exp, -2, 2, main = "Exponential Function",xlab = "Input", ylab = "Output",col = "darkgreen", lty = 2)
grid()  # 添加网格线

特殊函数绘制

统计分布函数可直接调用:

curve(dnorm, -3, 3)  # 正态分布密度
curve(pnorm, -3, 3)  # 正态分布累积概率

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

# 设置随机种子
set.seed(123)# 定义x值范围
x <- seq(-10, 10, length.out = 200)# 设置图形布局为3行4列
par(mfrow = c(2, 2), mar = c(4, 4, 2, 2))  # 调整边距# 1. 线性函数
y1 <- 2 + 0.5 * x
plot(x, y1, type = "l", col = "blue", lwd = 2, main = "Linear Function", xlab = "x", ylab = "y")# 2. 多项式函数
y2 <- 2 + 0.5 * x + 0.1 * x^2
plot(x, y2, type = "l", col = "red", lwd = 2, main = "Polynomial Function", xlab = "x", ylab = "y")# 3. 指数函数
y3 <- 2 * exp(0.3 * x)
plot(x, y3, type = "l", col = "green", lwd = 2, main = "Exponential Function", xlab = "x", ylab = "y")# 4. 对数函数
y4 <- 2 + 0.5 * log(abs(x) + 1)  # 避免对负数取对数
plot(x, y4, type = "l", col = "purple", lwd = 2, main = "Logarithmic Function", xlab = "x", ylab = "y")# 设置图形布局为3行4列
par(mfrow = c(2, 2), mar = c(4, 4, 2, 2))  # 调整边距# 5. 幂函数
y5 <- 2 * x^0.5
plot(x, y5, type = "l", col = "orange", lwd = 2, main = "Power Function", xlab = "x", ylab = "y")# 6. 逻辑函数
y6 <- 1 / (1 + exp(-(2 + 0.5 * x)))
plot(x, y6, type = "l", col = "brown", lwd = 2, main = "Logistic Function", xlab = "x", ylab = "y")# 7. 正弦函数
y7 <- 2 * sin(0.5 * x + 1)
plot(x, y7, type = "l", col = "pink", lwd = 2, main = "Sine Function", xlab = "x", ylab = "y")# 8. 余弦函数
y8 <- 2 * cos(0.5 * x + 1)
plot(x, y8, type = "l", col = "cyan", lwd = 2, main = "Cosine Function", xlab = "x", ylab = "y")# 设置图形布局为3行4列
par(mfrow = c(2, 2), mar = c(4, 4, 2, 2))  # 调整边距# 9. 高斯函数
y9 <- 2 * exp(-((x - 0)^2) / (2 * 1^2))
plot(x, y9, type = "l", col = "magenta", lwd = 2, main = "Gaussian Function", xlab = "x", ylab = "y")# 10. 双曲函数
y10 <- 2 * tanh(0.5 * x + 1)
plot(x, y10, type = "l", col = "gray", lwd = 2, main = "Hyperbolic Function", xlab = "x", ylab = "y")# 11. 双指数函数y11 <- 2 * exp(-0.5 * abs(x))
plot(x, y11, type = "l", col = "gray", lwd = 2, main = "Hyperbolic Function", xlab = "x", ylab = "y")# 12. 三次多项式函数y12 <- 2 + 0.5 * x + 0.1 * x^2 + 0.01 * x^3
plot(x, y12, type = "l", col = "gray", lwd = 2, main = "Hyperbolic Function", xlab = "x", ylab = "y")
http://www.xdnf.cn/news/657955.html

相关文章:

  • Sparse VideoGen开源:完全无损,视频生成速度加速两倍,支持Wan 2.1、HunyuanVideo等
  • DAY12打卡 启发式算法
  • 基于yjs实现协同编辑页面
  • 学习黑客Metasploit 框架的原理
  • 端午假期 · 粽享欢乐
  • 开源Vue表单设计器 FcDesigner 组件提供的方法详解
  • 《1.1_4计算机网络的分类|精讲篇|附X-mind思维导图》
  • deepseek告诉您http与https有何区别?
  • CQF预备知识:一、微积分 -- 1.4.6 莱布尼茨法则详解
  • Mysql在SQL层面的优化
  • [Java实战]SpringBoot集成SNMP实现OID数据获取:原理、实践与测试(三十三)
  • GitLab 从 17.10 到 18.0.1 的升级指南
  • 动态规划-918.环形子数组的最大和-力扣(LeetCode)
  • SQL Driver
  • 16QAM通信系统设计与实现(上篇)——信号生成与调制技术(python版本)
  • leetcode 525. 连续数组
  • CertiK联创顾荣辉做客纽交所,剖析Bybit与Coinbase事件暴露的Web3安全新挑战
  • 原子操作(C++)
  • 深度体验:海螺 AI,开启智能创作新时代
  • liunx、ubantu22.04安装neo4j数据库并设置开机自启
  • AI工程师跑路了-SpringAi来帮忙
  • 学习路之PHP--easyswoole安装入门
  • LINUX安装运行jeelowcode前端项目
  • SC89171的介绍和使用
  • 炫云云渲染,构筑虚实交融的3D数字新视界
  • AI的“软肋”:架构设计与业务分析的壁垒
  • OpenCV CUDA模块图像过滤------创建一个行方向的一维积分(Sum)滤波器函数createRowSumFilter()
  • 爬虫IP代理效率优化:策略解析与实战案例
  • Neo4j(三) - 使用Java操作Neo4j详解
  • 第12次05: 用户中心-用户基本信息