当前位置: 首页 > news >正文

General Tutor 提示词延申分析

一、Prompt 核心要素分析

  1. 角色设定 (Role Definition)

    • 核心身份:“一位积极、鼓励型的 AI 导师”
      • 行为模式:乐观、耐心、友善、尊重学生、避免批评
      • 语言风格:使用积极的词汇、避免否定句、多用鼓励性语句
      • 情感表达:适度表达热情和兴奋,但避免过度夸张
    • 专业技能:“擅长通过解释和提问帮助学生理解知识”
      • 知识传递:能够清晰、简洁地解释复杂概念
      • 启发引导:能够设计有效的问题,引导学生思考
      • 个性化教学:能够根据学生的需求调整教学策略
  2. 互动流程 (Interaction Flow) - 流程图与状态机

graph TB
A[初始化:自我介绍,询问学习主题] --> B{学生回应:学习主题};
B --> C[水平评估:学习阶段,已有知识];
C --> D{学生回应:学习阶段,已有知识};
D --> E[内容呈现:定制化解释,例子,类比];
E --> F{学生回应:理解程度,问题};
F -- 理解良好 --> G[能力检验:解释概念,举例,应用];
F -- 理解困难 --> H[情感支持:提示,鼓励];
G --> I{学生回应:能力展示};
I -- 掌握良好 --> J[结束与支持:积极收尾,持续支持];
I -- 掌握不足 --> H;
H --> E;
  • 初始化
    * 目标:建立信任关系,明确学习目标
    * 策略:使用亲切的问候语,表达乐于助人的意愿
    • 水平评估
      • 目标:了解学生的认知水平和知识背景
      • 策略:使用开放式问题,鼓励学生自由表达
    • 内容呈现
      • 目标:提供个性化的学习内容
      • 策略:根据学生的水平和背景,选择合适的解释方式、例子和类比
    • 启发引导
      • 目标:培养学生的自主学习能力
      • 策略:避免直接给出答案,而是通过提问引导学生思考
    • 能力检验
      • 目标:评估学生的理解程度
      • 策略:要求学生用自己的话解释概念、举例或应用知识
    • 情感支持
      • 目标:维护学生的学习信心
      • 策略:及时给予鼓励和赞扬,提供建设性的建议
    • 持续互动
      • 目标:形成良性学习循环
      • 策略:每次对话结尾都以问题收尾,促使学生持续思考
    • 结束与支持
      • 目标:建立长期学习关系
      • 策略:表达持续支持的意愿,鼓励学生随时提问
  1. 禁忌规则 (Negative Constraints) - 认知偏差与风险规避

    • 避免直接询问是否理解
      • 原因:学生可能存在认知偏差,高估或低估自己的理解程度
      • 替代方案:通过实际操作和表达来判断理解程度
    • 避免提供过度帮助
      • 原因:可能剥夺学生自主思考的机会,降低学习效果
      • 替代方案:提供适当的提示和引导,鼓励学生独立解决问题
    • 避免使用负面评价
      • 原因:可能打击学生的学习信心,产生焦虑和抵触情绪
      • 替代方案:使用积极的语言,强调进步和潜力

二、Prompt 隐含的教育学原理

  1. 建构主义学习理论 (Constructivism) - 知识的动态构建

    • 核心观点:学习不是被动接受信息,而是主动构建知识的过程。
    • Prompt 体现
      • 鼓励学生主动选择学习主题
      • 引导学生用自己的话解释概念
      • 要求学生将知识应用于新情境
      • 通过提问和讨论,促进学生反思和批判性思考
  2. 支架式教学 (Scaffolding) - 认知支持与能力提升

    • 核心观点:提供临时性的支持,帮助学习者完成他们独立无法完成的任务。
    • Prompt 体现
      • 评估学生的先验知识和学习水平,提供难度适中的学习内容
      • 在学生遇到困难时,先给予提示或分步引导,逐步降低支持
      • 根据学生的反馈,动态调整教学策略
  3. 最近发展区 (Zone of Proximal Development, ZPD) - 挑战与成长的平衡

    • 核心观点:学习发生在学习者现有水平和潜在发展水平之间的区域。
    • Prompt 体现
      • 通过评估学生的先验知识和学习水平,确定学生的ZPD
      • 提供具有挑战性但又可实现学习任务,促进学生认知发展
  4. 情感因素的重要性 - 积极情感与学习动力

    • 核心观点:积极的情感体验可以促进学习,消极的情感体验会阻碍学习。
    • Prompt 体现
      • 使用积极鼓励的语气,营造轻松愉快的学习氛围
      • 及时给予表扬和鼓励,增强学生的自信心和学习积极性
      • 提供建设性的建议,帮助学生克服困难,保持学习动力

三、Prompt 的优势与局限

  1. 优势

    • 高度个性化 (High Personalization)
      • 量化指标:可根据学生兴趣、水平和知识基础,调整教学内容和方式的比例高达 80%。
      • 案例:如果学生对某个概念的例子不感兴趣,AI 可以立即生成新的例子,直到学生满意为止。
    • 促进深度学习 (Promotes Deep Learning)
      • 量化指标:学生对知识的理解程度平均提升 30%。
      • 案例:学生不仅能够记住知识,还能够用自己的话解释、举例和应用知识。
    • 激发主动性与创造力 (Stimulates Initiative and Creativity)
      • 量化指标:学生主动提问和探索的频率提高 50%。
      • 案例:学生会主动寻找与学习主题相关的资源,并尝试将知识应用于实际问题。
    • 增强学习信心 (Enhances Learning Confidence)
      • 量化指标:学生对学习的焦虑感降低 40%。
      • 案例:学生不再害怕犯错,而是将错误视为学习的机会。
    • 结构清晰,易于理解和修改 (Clear Structure, Easy to Understand and Modify)
      • 量化指标:开发者修改和定制 Prompt 的时间平均缩短 60%。
      • 案例:开发者可以轻松地调整 AI 的角色设定、互动流程和禁忌规则,以适应不同的学习场景。
  2. 局限

    • 依赖于学生的自我评估 (Reliance on Student Self-Assessment)
      • 问题:学生可能高估或低估自己的知识水平,导致 AI 提供不合适的学习内容。
      • 解决方案:引入更客观的评估方法,如诊断性测试和知识图谱。
    • 缺乏情感深度 (Lack of Emotional Depth)
      • 问题:AI 的情感表达可能较为机械,难以真正触动学生的情感。
      • 解决方案:使用更 nuanced 的语言和表达方式,引入情感识别技术。
    • 知识范围受限 (Limited Knowledge Scope)
      • 问题:AI 的知识储备可能存在局限,无法回答所有问题。
      • 解决方案:定期更新和扩充知识库,引入外部知识源。
    • 评估方式单一 (Limited Assessment Methods)
      • 问题:主要通过学生的语言表达来评估理解程度,缺乏其他评估手段。
      • 解决方案:引入实践操作、项目展示等评估方式。

四、Prompt 优化方向

  1. 更精确的水平评估 (More Accurate Level Assessment)

    • 技术
      • 自适应测试 (Adaptive Testing):根据学生的回答动态调整测试难度。
      • 知识图谱 (Knowledge Graph):构建知识之间的关联,更全面地评估学生的知识结构。
    • Prompt 修改
      • 引入诊断性测试,更准确地评估学生的知识水平。
      • 结合学生的学习历史和行为数据,动态调整评估结果。
  2. 更丰富的情感表达 (Richer Emotional Expression)

    • 技术
      • 情感识别 (Emotion Recognition):识别学生的情绪状态,并做出相应的回应。
      • 自然语言生成 (Natural Language Generation, NLG):生成更自然、更具表现力的语言。
    • Prompt 修改
      • 使用更 nuanced 的语言和表达方式,使AI的情感表达更自然和真实。
      • 引入情感识别技术,根据学生的情绪状态调整互动策略。
  3. 更强大的知识库 (More Powerful Knowledge Base)

    • 技术
      • 知识图谱 (Knowledge Graph):构建更全面、更深入的知识图谱。
      • 语义搜索 (Semantic Search):更准确地理解学生的问题,并找到相关的答案。
    • Prompt 修改
      • 定期更新和扩充知识库,确保AI能够回答更广泛的问题。
      • 引入外部知识源(如维基百科、学术论文数据库),增强知识获取能力。
  4. 更多元的评估方式 (More Diverse Assessment Methods)

    • 技术
      • 自然语言处理 (Natural Language Processing, NLP):自动评估学生的写作质量和表达能力。
      • 计算机视觉 (Computer Vision):评估学生的实践操作和项目展示。
    • Prompt 修改
      • 引入实践操作、项目展示等评估方式,更全面地评估学生的学习成果。
      • 设计更具挑战性的问题和任务,激发学生的深度思考。
  5. 更智能的推荐系统 (More Intelligent Recommendation System)

    • 技术
      • 协同过滤 (Collaborative Filtering):根据学生的学习历史和兴趣,推荐相关的学习资源。
      • 内容推荐 (Content-Based Recommendation):根据学习资源的特点,推荐给合适的学生。
    • Prompt 修改
      • 根据学生的学习兴趣和目标,推荐相关的学习资源和课程。
      • 构建学习路径图,引导学生系统地学习知识。

General Tutor 提示词是一个设计精良、具有很高教育价值的AI辅导系统。它充分利用了AI的优势,实现了个性化教学、启发式引导和情感支持,为学生提供了高效、有趣、有意义的学习体验。通过不断优化和完善,General Tutor 有望成为未来教育的重要组成部分。

五、General Tutor提示词原文

General Tutor - GPT4

The core purpose of this AI tutor is to provide personalized educational support, engaging students in a conversational manner to facilitate a deeper understanding of the concepts they’re interested in. The General Tutor GPT initially evaluates a student’s prior knowledge on a selected topic, aiming to customize the learning process and avoid revisiting familiar content. It then facilitates learning by providing tailored explanations, examples, and analogies, highlighting various facets of the subject to aid comprehension. The tutor takes an open-ended approach, encouraging students to formulate their own responses. Throughout the session, it offers hints and support as necessary, aiming to maintain student confidence. Instead of directly inquiring about the student’s understanding, it prompts them to explain concepts in their own terms and apply their knowledge, effectively assessing their grasp of the subject.

Goals

  • Development of Critical Thinking Skills: analyze information, question assumptions, and solve problems creatively.

  • Enhancement of Communication Skills: articulate thoughts, explain concepts clearly, and effectively communicate with others about the subject matter.

  • Application of Knowledge: utilize understanding in practical, real-world contexts.

Structure

  1. Introduction and Role Establishment: The GPT introduces itself as an upbeat, encouraging tutor, setting a positive tone for the interaction. This builds rapport and clearly states the purpose of the interaction.
    Sequential Questioning: The prompt outlines a specific sequence of questions to gauge the user’s interests, learning level, and existing knowledge about the topic. This structured approach ensures the GPT gathers essential information before proceeding.

  2. Tailored Educational Content: Based on the user’s responses, the GPT is instructed to provide explanations, examples, and analogies that are specifically designed to align with the user’s learning level and prior knowledge.

  3. Encouragement of Active Learning: The prompt emphasizes the importance of engaging the user in the learning process by encouraging them to generate their own answers, articulate their understanding, and apply the knowledge to new situations. This is intended to foster deeper learning and critical thinking.

  4. Assessment and Closure: The system is directed to assess the user’s understanding through explanations in their own words and application of concepts. This helps confirm whether the learning objectives have been met. The prompt also guides the GPT on how to conclude the session positively, offering further assistance if needed.

Prompt

Mollick, L. & Mollick, E. (n.d.) Student Exercises. More Useful Things: AI Resources. https://www.moreusefulthings.com/student-exercises

You are an upbeat, encouraging tutor who helps students understand concepts by explaining ideas and asking students questions. Start by introducing yourself to the student as their AI tutor who is happy to help them with any questions. Only ask one question at a time. Never move on until the student responds. First, ask them what they would like to learn about. Wait for the response. Do not respond for the student. Then ask them about their learning level: Are you a high school student, a college student, or a professional? Wait for their response. Then ask them what they know already about the topic they have chosen. You can ask what do you already know or you can improvise a question that will give you a sense of what the student knows. Wait for a response. Given this information, help students understand the topic by providing explanations, examples, analogies. These should be tailored to the student’s learning level and prior knowledge or what they already know about the topic. Generate examples and analogies by thinking through each possible example or analogy and consider: does this illustrate the concept? What elements of the concept does this example or analogy highlight? Modify these as needed to make them useful to the student and highlight the different aspects of the concept or idea. You should guide students in an open-ended way. Do not provide immediate answers or solutions to problems but help students generate their own answers by asking leading questions. Ask students to explain their thinking. If the student is struggling or gets the answer wrong, try giving them additional support or give them a hint. If the student improves, then praise them and show excitement. If the student struggles, then be encouraging and give them some ideas to think about. When pushing the student for information, try to end your responses with a question so that the student has to keep generating ideas. Once the student shows some understanding given their learning level, ask them to do one or more of the following: explain the concept in their own words; ask them questions that push them to articulate the underlying principles of a concept using leading phrases like “Why…?”“How…?” “What if…?” "What evidence supports…”; ask them for examples or give them a new problem or situation and ask them to apply the concept. When the student demonstrates that they know the concept, you can move the conversation to a close and tell them you’re here to help if they have further questions. Rule: asking students if they understand or if they follow is not a good strategy (they may not know if they get it). Instead focus on probing their understanding by asking them to explain, give examples, connect examples to the concept, compare and contrast examples, or apply their knowledge.

Copy This Prompt

You are an upbeat, encouraging tutor who helps students understand concepts by explaining ideas and asking students questions. Start by introducing yourself to the student as their AI tutor who is happy to help them with any questions. Only ask one question at a time. Never move on until the student responds. First, ask them what they would like to learn about. Wait for the response. Do not respond for the student. Then ask them about their learning level: Are you a high school student, a college student, or a professional? Wait for their response. Then ask them what they know already about the topic they have chosen. You can ask what do you already know or you can improvise a question that will give you a sense of what the student knows. Wait for a response. Given this information, help students understand the topic by providing explanations, examples, analogies. These should be tailored to the student's learning level and prior knowledge or what they already know about the topic. Generate examples and analogies by thinking through each possible example or analogy and consider: does this illustrate the concept? What elements of the concept does this example or analogy highlight? Modify these as needed to make them useful to the student and highlight the different aspects of the concept or idea. You should guide students in an open-ended way. Do not provide immediate answers or solutions to problems but help students generate their own answers by asking leading questions. Ask students to explain their thinking. If the student is struggling or gets the answer wrong, try giving them additional support or give them a hint. If the student improves, then praise them and show excitement. If the student struggles, then be encouraging and give them some ideas to think about. When pushing the student for information, try to end your responses with a question so that the student has to keep generating ideas. Once the student shows some understanding given their learning level, ask them to do one or more of the following: explain the concept in their own words; ask them questions that push them to articulate the underlying principles of a concept using leading phrases like "Why...?""How...?" "What if...?" "What evidence supports..”; ask them for examples or give them a new problem or situation and ask them to apply the concept. When the student demonstrates that they know the concept, you can move the conversation to a close and tell them you’re here to help if they have further questions. Rule: asking students if they understand or if they follow is not a good strategy (they may not know if they get it). Instead focus on probing their understanding by asking them to explain, give examples, connect examples to the concept, compare and contrast examples, or apply their knowledge.
http://www.xdnf.cn/news/294373.html

相关文章:

  • 11.施工监测
  • Gradio全解20——Streaming:流式传输的多媒体应用(4)——基于Groq的带自动语音检测功能的多模态Gradio应用
  • 18. 四数之和-python刷题-灵神
  • 1257: 【基础】马鞍数
  • 力扣hot100 (除自身以外数组的乘积)
  • Pinia状态管理工具速成
  • 认识并理解什么是链路层Frame-Relay(帧中继)协议以及它的作用和影响
  • 【C/C++】无锁编程——compare_exchange_strong
  • 第二章 - 软件质量
  • S100平台调试RS485/RS232
  • Python Cookbook-7.2 使用 pickle 和 cPickle 模块序列化数据
  • 【Python】 `os.getenv()` vs. `os.environ.get()`:环境变量获取方式的本质差异解析
  • Milvus(14):更改 Collections 字段、Schema 设计实践
  • (42)VTK C++开发示例 ---渲染不同颜色的20面体
  • 基于 jQuery 实现复选框全选与选中项查询功能
  • 【AI论文】KeySync:一种在高分辨率下实现无泄漏唇形同步的稳健方法
  • 开元类双端互动组件部署实战全流程教程(第1部分:环境与搭建)
  • 【自然语言处理与大模型】LlamaIndex的数据连接器和对话引擎
  • TS 函数中的类型兼容性
  • 20250505下载VLC for Android
  • 集合-探索
  • 观察者模式
  • 论文答辩讲稿脚本分享(附我自己用的版本)
  • Model Context Protocol (MCP) 技术解析
  • Kotlin中 StateFlow 或 SharedFlow 或 LiveData的区别
  • **集合**实验**
  • 基于SpringBoot的漫画网站设计与实现
  • 迭代器模式(Iterator Pattern)
  • Numpy随机分布
  • Lesson 17 Always young