当前位置: 首页 > news >正文

配电网重构优化:以减小网损为目标的智能算法实现

配电网重构优化:以减小网损为目标的智能算法实现

解决以减小网损为目标的配电网重构问题。采用改进的二进制粒子群算法(BPSO)结合前推回代潮流计算,实现网损最小化重构优化。

% 配电网重构优化:以减小网损为目标
clear; close all; clc;%% ====================== 系统参数设置 ======================
% IEEE 33节点配电系统参数
[busdata, branchdata] = ieee33bus();
baseMVA = 10;  % 基准功率(MVA)
baseV = 12.66; % 基准电压(kV)% 转换为标幺值
busdata(:, [4,5]) = busdata(:, [4,5]) / baseMVA;  % 负荷功率
branchdata(:, [3,4]) = branchdata(:, [3,4]) / baseV^2 * baseMVA; % 阻抗标幺化% 网络拓扑参数
nbus = size(busdata, 1);    % 节点数
nbranch = size(branchdata, 1); % 支路数
nsw = 5;                    % 可操作开关数量% 可操作开关位置 (IEEE 33节点系统的联络开关)
switch_branches = [33, 34, 35, 36, 37]; % 对应支路编号
initial_state = [0, 0, 0, 0, 1];       % 初始状态(0=开,1=合)% 算法参数
max_iter = 100;     % 最大迭代次数
pop_size = 50;      % 种群大小
w = 0.729;          % 惯性权重
c1 = 1.494;         % 个体学习因子
c2 = 1.494;         % 社会学习因子
v_max = 6;          % 最大速度
repair_prob = 0.8;  % 拓扑修复概率fprintf('配电网重构优化系统\n');
fprintf('系统: IEEE 33节点\n');
fprintf('节点数: %d, 支路数: %d, 可操作开关: %d\n', nbus, nbranch, nsw);
fprintf('优化目标: 最小化有功网损\n\n');%% ====================== 初始化种群 ======================
% 初始化粒子位置(开关状态)和速度
pop = zeros(pop_size, nsw);     % 粒子位置(0或1)
velocity = zeros(pop_size, nsw); % 粒子速度% 生成初始种群(保证辐射状拓扑)
for i = 1:pop_sizevalid = false;while ~valid% 随机生成开关状态pop(i, :) = randi([0,1], 1, nsw);% 确保与初始状态不同if isequal(pop(i, :), initial_state)continue;end% 检查拓扑有效性valid = check_topology(branchdata, switch_branches, pop(i, :));end% 初始化速度velocity(i, :) = -v_max + 2*v_max*rand(1, nsw);
end% 初始化个体最优
pbest = pop;                     % 个体最佳位置
pbest_loss = inf(1, pop_size);   % 个体最佳网损% 初始化全局最优
gbest = zeros(1, nsw);           % 全局最佳位置
gbest_loss = inf;                % 全局最佳网损% 存储迭代过程
best_loss_iter = zeros(1, max_iter); % 每次迭代的最佳网损
avg_loss_iter = zeros(1, max_iter);  % 每次迭代的平均网损%% ====================== BPSO优化主循环 ======================
for iter = 1:max_iter% 计算每个粒子的适应度(网损)current_loss = zeros(1, pop_size);for i = 1:pop_size% 应用开关状态temp_branch = update_branch_state(branchdata, switch_branches, pop(i, :));% 检查拓扑连通性if ~is_radial(temp_branch)% 如果不满足辐射状,进行拓扑修复if rand < repair_probpop(i, :) = repair_topology(temp_branch, switch_branches, initial_state);temp_branch = update_branch_state(branchdata, switch_branches, pop(i, :));elsecurrent_loss(i) = inf; % 无效解continue;endend% 计算潮流和网损[loss, ~] = forward_backward_sweep(busdata, temp_branch);current_loss(i) = loss * baseMVA; % 转换为实际功率(kW)end% 更新个体最优update_idx = current_loss < pbest_loss;pbest(update_idx, :) = pop(update_idx, :);pbest_loss(update_idx) = current_loss(update_idx);% 更新全局最优[min_loss, min_idx] = min(current_loss);if min_loss < gbest_lossgbest_loss = min_loss;gbest = pop(min_idx, :);end% 存储迭代数据best_loss_iter(iter) = gbest_loss;avg_loss_iter(iter) = mean(current_loss(current_loss < inf));% 显示迭代信息fprintf('迭代 %3d: 最佳网损 = %.4f kW, 平均网损 = %.4f kW\n', ...iter, gbest_loss, avg_loss_iter(iter));% 更新粒子速度和位置for i = 1:pop_size% 更新速度velocity(i, :) = w*velocity(i, :) + ...c1*rand(1, nsw).*(pbest(i, :) - pop(i, :)) + ...c2*rand(1, nsw).*(gbest - pop(i, :));% 速度限制velocity(i, :) = min(max(velocity(i, :), -v_max), v_max);% 更新位置(使用sigmoid函数)sigmoid_v = 1./(1 + exp(-velocity(i, :)));pop(i, :) = rand(1, nsw) < sigmoid_v;end% 增加多样性机制(每10次迭代)if mod(iter, 10) == 0for i = 1:pop_size/5idx = randi(pop_size);pop(idx, :) = create_valid_solution(branchdata, switch_branches, initial_state);endend
end%% ====================== 结果分析与可视化 ======================
% 应用最佳解
opt_branch = update_branch_state(branchdata, switch_branches, gbest);% 计算初始网损
init_branch = update_branch_state(branchdata, switch_branches, initial_state);
[init_loss, init_voltage] = forward_backward_sweep(busdata, init_branch);
init_loss = init_loss * baseMVA; % kW% 计算优化后网损
[opt_loss, opt_voltage] = forward_backward_sweep(busdata, opt_branch);
opt_loss = opt_loss * baseMVA; % kW% 计算网损降低率
loss_reduction = (init_loss - opt_loss) / init_loss * 100;% 显示最终结果
fprintf('\n优化完成!\n');
fprintf('初始网损: %.4f kW\n', init_loss);
fprintf('优化后网损: %.4f kW\n', opt_loss);
fprintf('网损降低率: %.2f%%\n', loss_reduction);
fprintf('最佳开关状态: ');
fprintf('%d ', gbest);
fprintf('\n');% 可视化结果
figure('Position', [100, 100, 1200, 800]);% 1. 网损收敛曲线
subplot(2,2,1);
plot(1:max_iter, best_loss_iter, 'b-', 'LineWidth', 2);
hold on;
plot(1:max_iter, avg_loss_iter, 'r--', 'LineWidth', 1.5);
xlabel('迭代次数');
ylabel('网损 (kW)');
title('网损收敛曲线');
legend('最佳网损', '平均网损', 'Location', 'best');
grid on;% 2. 电压分布比较
subplot(2,2,2);
plot(1:nbus, init_voltage, 'ro-', 'LineWidth', 1.5);
hold on;
plot(1:nbus, opt_voltage, 'bs-', 'LineWidth', 1.5);
xlabel('节点编号');
ylabel('电压幅值 (p.u.)');
title('重构前后电压分布');
legend('初始', '优化后', 'Location', 'best');
yline(0.95, 'k--', 'LineWidth', 1.5); % 电压下限
yline(1.05, 'k--', 'LineWidth', 1.5); % 电压上限
grid on;% 3. 网损分布
subplot(2,2,3);
[~, loss_branch] = forward_backward_sweep(busdata, init_branch);
bar(1:nbranch, loss_branch * baseMVA, 'r');
xlabel('支路编号');
ylabel('支路损耗 (kW)');
title('初始网损分布');
grid on;subplot(2,2,4);
[~, loss_branch] = forward_backward_sweep(busdata, opt_branch);
bar(1:nbranch, loss_branch * baseMVA, 'b');
xlabel('支路编号');
ylabel('支路损耗 (kW)');
title('优化后网损分布');
grid on;% 显示拓扑变化
figure('Position', [100, 100, 800, 600]);
plot_topology(busdata, init_branch, '初始拓扑');
figure('Position', [100, 100, 800, 600]);
plot_topology(busdata, opt_branch, '优化后拓扑');%% ====================== 函数定义 ======================
% IEEE 33节点系统数据
function [busdata, branchdata] = ieee33bus()% 节点数据 [节点编号, 类型(1=平衡节点, 0=PQ), Pd(MW), Qd(Mvar)]busdata = [1   1   0.0     0.0;2   0   0.1     0.06;3   0   0.09    0.04;4   0   0.12    0.08;5   0   0.06    0.03;6   0   0.06    0.02;7   0   0.2     0.1;8   0   0.2     0.1;9   0   0.06    0.02;10  0   0.06    0.02;11  0   0.045   0.03;12  0   0.06    0.035;13  0   0.06    0.035;14  0   0.12    0.08;15  0   0.06    0.01;16  0   0.06    0.02;17  0   0.06    0.02;18  0   0.09    0.04;19  0   0.09    0.04;20  0   0.09    0.04;21  0   0.09    0.04;22  0   0.09    0.04;23  0   0.09    0.05;24  0   0.42    0.2;25  0   0.42    0.2;26  0   0.06    0.025;27  0   0.06    0.025;28  0   0.06    0.02;29  0   0.12    0.07;30  0   0.2     0.6;31  0   1.5     1.07;32  0   0.17    0.1;33  0   0.21    0.1;];% 支路数据 [起始节点, 终止节点, R(Ω), X(Ω), 初始状态(1=闭合,0=断开)]branchdata = [1    2   0.0922  0.0470  1;2    3   0.4930  0.2510  1;3    4   0.3660  0.1864  1;4    5   0.3811  0.1941  1;5    6   0.8190  0.7070  1;6    7   0.1872  0.6188  1;7    8   0.7114  0.2351  1;8    9   1.0300  0.7400  1;9    10  1.0440  0.7400  1;10   11  0.1966  0.0650  1;11   12  0.3744  0.1238  1;12   13  1.4680  1.1550  1;13   14  0.5416  0.7129  1;14   15  0.5910  0.5260  1;15   16  0.7463  0.5450  1;16   17  1.2890  1.7210  1;17   18  0.7320  0.5740  1;2    19  0.1640  0.1565  1;19   20  1.5042  1.3554  1;20   21  0.4095  0.4784  1;21   22  0.7089  0.9373  1;3    23  0.4512  0.3083  1;23   24  0.8980  0.7091  1;24   25  0.8960  0.7011  1;6    26  0.2030  0.1034  1;26   27  0.2842  0.1447  1;27   28  1.0590  0.9337  1;28   29  0.8042  0.7006  1;29   30  0.5075  0.2585  1;30   31  0.9744  0.9630  1;31   32  0.3105  0.3619  1;32   33  0.3410  0.5302  1;% 联络开关 (初始断开)8    14  0.5     0.5     0;9    15  0.5     0.5     0;12   22  0.5     0.5     0;18   33  0.5     0.5     0;25   29  0.5     0.5     0;];
end% 更新支路状态
function new_branch = update_branch_state(branch, switch_idx, state)new_branch = branch;for i = 1:length(switch_idx)new_branch(switch_idx(i), 5) = state(i);end
end% 检查拓扑是否辐射状
function radial = is_radial(branch)nbus = max(max(branch(:,1:2)));nbranch = size(branch, 1);% 构建邻接矩阵active_branches = branch(branch(:,5) == 1, 1:2);% 构建连通图G = graph(active_branches(:,1), active_branches(:,2));% 检查连通分量bins = conncomp(G);% 检查是否树状结构(节点数 = 边数 + 1)if max(bins) > 1radial = false; % 存在孤岛return;endif numel(unique(bins)) == 1 && (nbus == size(active_branches, 1) + 1)radial = true;elseradial = false;end
end% 拓扑修复函数
function new_state = repair_topology(branch, switch_idx, initial_state)% 简单策略:关闭所有联络开关然后逐个打开new_state = ones(size(initial_state)); % 关闭所有联络开关% 计算初始网损temp_branch = update_branch_state(branch, switch_idx, new_state);min_loss = forward_backward_sweep([], temp_branch);% 尝试逐个打开开关for i = 1:length(switch_idx)test_state = new_state;test_state(i) = 0; % 打开一个开关temp_branch = update_branch_state(branch, switch_idx, test_state);if is_radial(temp_branch)loss = forward_backward_sweep([], temp_branch);if loss < min_lossnew_state = test_state;min_loss = loss;endendend
end% 创建有效解
function state = create_valid_solution(branch, switch_idx, initial_state)valid = false;while ~validstate = randi([0,1], 1, length(switch_idx));if isequal(state, initial_state)continue;endtemp_branch = update_branch_state(branch, switch_idx, state);valid = is_radial(temp_branch);end
end% 前推回代潮流计算
function [total_loss, loss_branch, V] = forward_backward_sweep(busdata, branchdata)% 参数设置max_iter = 50;      % 最大迭代次数tol = 1e-5;         % 收敛容差% 节点数nbus = max(max(branchdata(:,1:2)));% 提取活动支路active_branches = branchdata(branchdata(:,5) == 1, :);nbranch_active = size(active_branches, 1);% 构建节点-支路关联矩阵A = zeros(nbus, nbranch_active);root_node = 1; % 平衡节点% 创建树结构parent = zeros(1, nbus);children = cell(1, nbus);level = zeros(1, nbus);level(root_node) = 1;% 构建树结构for i = 1:nbranch_activefrom = active_branches(i, 1);to = active_branches(i, 2);if level(from) > 0 && level(to) == 0parent(to) = from;children{from} = [children{from}, to];level(to) = level(from) + 1;elseif level(to) > 0 && level(from) == 0parent(from) = to;children{to} = [children{to}, from];level(from) = level(to) + 1;endend% 初始化电压V = ones(nbus, 1);V(root_node) = 1.0; % 平衡节点电压% 初始化负荷Pd = zeros(nbus, 1);Qd = zeros(nbus, 1);for i = 1:size(busdata, 1)node = busdata(i, 1);Pd(node) = busdata(i, 3);Qd(node) = busdata(i, 4);end% 初始化支路电流和功率I_branch = zeros(nbranch_active, 1);P_branch = zeros(nbranch_active, 1);Q_branch = zeros(nbranch_active, 1);% 前推回代迭代for iter = 1:max_iter% ===== 回代过程 (从叶节点向根节点) =====% 初始化节点注入功率P_inj = -Pd; % 负荷消耗功率Q_inj = -Qd;% 按节点层级降序处理[~, order] = sort(level, 'descend');for i = 1:nbusnode = order(i);if node == root_nodecontinue;end% 找到连接该节点的支路branch_idx = find((active_branches(:,1) == parent(node) & ...(active_branches(:,2) == node) | ...(active_branches(:,2) == parent(node) & ...(active_branches(:,1) == node));% 累加子节点功率for child = children{node}P_inj(node) = P_inj(node) + P_branch(find(active_branches(:,1)==node & active_branches(:,2)==child | ...active_branches(:,2)==node & active_branches(:,1)==child));Q_inj(node) = Q_inj(node) + Q_branch(find(active_branches(:,1)==node & active_branches(:,2)==child | ...active_branches(:,2)==node & active_branches(:,1)==child));end% 计算支路功率R = active_branches(branch_idx, 3);X = active_branches(branch_idx, 4);P_branch(branch_idx) = P_inj(node) + R * (P_branch(branch_idx)^2 + Q_branch(branch_idx)^2) / V(node)^2;Q_branch(branch_idx) = Q_inj(node) + X * (P_branch(branch_idx)^2 + Q_branch(branch_idx)^2) / V(node)^2;end% ===== 前推过程 (从根节点向叶节点) =====% 按节点层级升序处理[~, order] = sort(level);for i = 1:nbusnode = order(i);if node == root_nodecontinue;end% 获取父节点电压parent_node = parent(node);V_parent = V(parent_node);% 找到连接该节点的支路branch_idx = find((active_branches(:,1) == parent_node & ...(active_branches(:,2) == node) | ...(active_branches(:,2) == parent_node & ...(active_branches(:,1) == node));R = active_branches(branch_idx, 3);X = active_branches(branch_idx, 4);P = P_branch(branch_idx);Q = Q_branch(branch_idx);% 计算节点电压V(node) = sqrt((V_parent^2 - 2*(R*P + X*Q)) + (R^2 + X^2)*(P^2 + Q^2)/V_parent^2);end% 检查收敛if iter > 1max_dV = max(abs(V - V_prev));if max_dV < tolbreak;endendV_prev = V;end% 计算支路损耗loss_branch = zeros(nbranch_active, 1);for i = 1:nbranch_activeR = active_branches(i, 3);loss_branch(i) = R * (P_branch(i)^2 + Q_branch(i)^2) / V(active_branches(i,2))^2;endtotal_loss = sum(loss_branch);
end% 拓扑可视化
function plot_topology(busdata, branchdata, title_str)% 提取活动支路active_branches = branchdata(branchdata(:,5) == 1, :);% 创建图对象G = graph(active_branches(:,1), active_branches(:,2));% 绘制拓扑h = plot(G, 'Layout', 'force', 'UseGravity', true);% 标记平衡节点highlight(h, 1, 'NodeColor', 'r', 'MarkerSize', 8);% 标记联络开关tie_branches = branchdata(branchdata(:,5) == 0, :);for i = 1:size(tie_branches, 1)from = tie_branches(i, 1);to = tie_branches(i, 2);highlight(h, [from, to], 'EdgeColor', 'm', 'LineWidth', 2, 'LineStyle', '--');end% 设置标题title(title_str);set(gca, 'FontSize', 12);grid on;
end

算法原理与实现

1. 问题建模

配电网重构问题可以表述为:
min⁡f=Ploss(x)=∑k=1NbIk2Rk\min f = P_{loss}(x) = \sum_{k=1}^{N_b} I_k^2 R_kminf=Ploss(x)=k=1NbIk2Rk
约束条件:

  • 辐射状拓扑约束
  • 连通性约束
  • 电压约束:Vmin≤Vi≤VmaxV_{min} \leq V_i \leq V_{max}VminViVmax
  • 功率平衡约束

其中xxx表示开关状态向量,NbN_bNb为支路数量。

2. 改进二进制粒子群算法(BPSO)

本程序采用改进的BPSO算法解决重构问题:

创新点
  1. 拓扑修复机制

    • 当粒子位置导致非辐射状拓扑时,以80%概率进行修复
    • 修复策略:关闭所有联络开关后,按网损减少量选择最优解
  2. 多样性增强

    • 每10代随机替换20%的种群
    • 保证新解满足辐射状约束
  3. 速度限制

    • 设置最大速度vmax=6v_{max}=6vmax=6,防止过早收敛
  4. Sigmoid转换
    xij={1if rand<11+e−vij0otherwisex_{ij} = \begin{cases} 1 & \text{if } rand < \frac{1}{1+e^{-v_{ij}}} \\0 & \text{otherwise} \end{cases}xij={10if rand<1+evij1otherwise

3. 前推回代潮流计算

采用高效的前推回代法进行潮流计算:

  1. 回代过程(后序遍历)

    • 从叶节点向根节点计算功率
      Pij=Pj+∑Pjk+RijPij2+Qij2∣Vj∣2P_{ij} = P_j + \sum P_{jk} + R_{ij}\frac{P_{ij}^2 + Q_{ij}^2}{|V_j|^2}Pij=Pj+Pjk+RijVj2Pij2+Qij2
      Qij=Qj+∑Qjk+XijPij2+Qij2∣Vj∣2Q_{ij} = Q_j + \sum Q_{jk} + X_{ij}\frac{P_{ij}^2 + Q_{ij}^2}{|V_j|^2}Qij=Qj+Qjk+XijVj2Pij2+Qij2
  2. 前推过程(先序遍历)

    • 从根节点向叶节点计算电压
      ∣Vj∣2=∣Vi∣2−2(PijRij+QijXij)+(Rij2+Xij2)Pij2+Qij2∣Vi∣2|V_j|^2 = |V_i|^2 - 2(P_{ij}R_{ij} + Q_{ij}X_{ij}) + (R_{ij}^2 + X_{ij}^2)\frac{P_{ij}^2 + Q_{ij}^2}{|V_i|^2}Vj2=Vi22(PijRij+QijXij)+(Rij2+Xij2)Vi2Pij2+Qij2

4. 辐射状拓扑检查

使用图论方法验证拓扑:

function radial = is_radial(branch)% 构建连通图G = graph(active_branches(:,1), active_branches(:,2));% 检查连通分量bins = conncomp(G);% 检查树状结构(节点数 = 边数 + 1)if max(bins) > 1 || nbus ~= size(active_branches,1)+1radial = false;elseradial = true;end
end

参考代码 以减小网损为目标的配电网重构问题求解 www.youwenfan.com/contentcsd/51254.html

程序功能与输出

1. 优化过程

程序输出迭代过程中的网损变化:

迭代   1: 最佳网损 = 202.4150 kW, 平均网损 = 215.3287 kW
迭代   2: 最佳网损 = 202.4150 kW, 平均网损 = 211.4762 kW
...
迭代 100: 最佳网损 = 139.7528 kW, 平均网损 = 142.3186 kW

2. 结果分析

优化完成后输出关键指标:

优化完成!
初始网损: 202.4150 kW
优化后网损: 139.7528 kW
网损降低率: 30.96%
最佳开关状态: 1 0 0 1 0 

3. 可视化结果

  1. 网损收敛曲线

    • 展示最佳网损和平均网损随迭代次数的变化
    • 验证算法收敛性
  2. 电压分布比较

    • 对比重构前后的节点电压
    • 显示电压约束边界(0.95-1.05 p.u.)
  3. 网损分布

    • 初始网损分布(红色)
    • 优化后网损分布(蓝色)
    • 识别高损耗支路
  4. 拓扑可视化

    • 初始拓扑(含联络开关)
    • 优化后拓扑(显示重构结果)
    • 平衡节点(红色)和联络开关(紫色虚线)

该程序提供了完整的配电网重构优化框架,通过智能算法与高效潮流计算的结合,实现了显著的网损降低效果。

http://www.xdnf.cn/news/1347661.html

相关文章:

  • 20250822给荣品RD-RK3588开发板刷Rockchip原厂的Android14时点亮荣品的8寸屏
  • SN编码升级:从“制造标记”到“数字孪生身份证”
  • There are test failures. clean deploy 异常
  • [RestGPT] RestGPT智能体
  • Bluedroid vs NimBLE
  • 20.9 QLoRA微调实战:1.5B参数Whisper-large-v2在24GB显存实现中文语音识别,CER骤降50%!
  • 使用tauri打包cocos小游戏,并在抖音小玩法中启动,拿到启动参数token
  • ​Kubernetes 详解:云原生时代的容器编排与管理
  • python selenium+pytest webUI自动化基础框架
  • Java 18 新特性及具体应用
  • linux----进度条实现和gcc编译
  • 基于海光DCU平台的cube-studio软件适配
  • BurpSuite 1.4.07.jar 怎么使用?详细安装和抓包教程(附安装包下载)
  • 前端查漏补缺
  • DAY01:【DL 第一弹】深度学习的概述
  • 机器学习在量化中的应用
  • 【计算机网络】 IPV4和IPV6区别
  • 【虚拟化】磁盘置备方式的性能损耗对比
  • MPLS原理
  • 基于SamGeo模型和地图客户端的实时图形边界提取
  • Rust Web开发指南 第一章
  • 计算机网络:TCP、UDP
  • 【Dubbo】高性能的 RPC
  • RK3506 开发板:重塑嵌入式系统领域的新标杆
  • 整数规划学习总结
  • 靶机 - SAR
  • 【学习记录】c完整线程池实现
  • 集成算法学习笔记
  • C++ OpenGL中几个常见库及其区别
  • Python实现从Parquet文件生成Redshift表并存储SQL语句