当前位置: 首页 > news >正文

rk3588上完成halcon的形状模型配准以及和opencv的图像转换

一、准备工作

1)安装好halcon,确保halcon的c++的调用是正常的

2)编译好opencv

上面的两个步骤,均可以参考我的两个博文完成:

Halcon在linux及ARM上的安装及c++工程化_halcon linux-CSDN博客

RK3588上编译opencv 及基于c++实现图像的读入-CSDN博客 

二、代码准备

2.1 基于c++的opencv和halcon之间的图像的转换代码

// 将halcon图像转换为opencv的图像
Mat HImageToMat(HObject &imgHalcon)
{HTuple channels;HString cType;cv::Mat Image;ConvertImageType(imgHalcon, &imgHalcon, "byte");CountChannels(imgHalcon, &channels);Hlong width = 0;Hlong height = 0;if (channels[0].I() == 1){HImage hImg(imgHalcon);void *ptr = hImg.GetImagePointer1(&cType, &width, &height);//GetImagePointer1(Hobj, &ptr, &cType, &wid, &hgt);int W = width;int H = height;Image.create(H, W, CV_8UC1);unsigned char *pdata = static_cast<unsigned char *>(ptr);memcpy(Image.data, pdata, W*H);}else if (channels[0].I() == 3){void *Rptr;void *Gptr;void *Bptr;HImage hImg(imgHalcon);hImg.GetImagePointer3(&Rptr, &Gptr, &Bptr, &cType, &width, &height);int W = width;int H = height;Image.create(H, W, CV_8UC3);vector<cv::Mat> VecM(3);VecM[0].create(H, W, CV_8UC1);VecM[1].create(H, W, CV_8UC1);VecM[2].create(H, W, CV_8UC1);unsigned char *R = (unsigned char *)Rptr;unsigned char *G = (unsigned char *)Gptr;unsigned char *B = (unsigned char *)Bptr;memcpy(VecM[2].data, R, W*H);memcpy(VecM[1].data, G, W*H);memcpy(VecM[0].data, B, W*H);cv::merge(VecM, Image);}return Image;
}//OpenCV Mat -> Halcon HObject​
HObject MatToHImage(Mat &imgMat)
{HObject Hobj = HObject();int height = imgMat.rows;int width = imgMat.cols;int i;//  CV_8UC3if (imgMat.type() == CV_8UC3){vector<cv::Mat> imgchannel;split(imgMat, imgchannel);cv::Mat imgB = imgchannel[0];cv::Mat imgG = imgchannel[1];cv::Mat imgR = imgchannel[2];uchar* dataR = new uchar[height * width];uchar* dataG = new uchar[height * width];uchar* dataB = new uchar[height * width];for (i = 0; i<height; i++){memcpy(dataR + width*i, imgR.data + imgR.step*i, width);memcpy(dataG + width*i, imgG.data + imgG.step*i, width);memcpy(dataB + width*i, imgB.data + imgB.step*i, width);}GenImage3(&Hobj, "byte", width, height, (Hlong)dataR, (Hlong)dataG, (Hlong)dataB);delete[]dataR;delete[]dataG;delete[]dataB;}//  CV_8UCU1else if (imgMat.type() == CV_8UC1){uchar* data = new uchar[height*width];for (i = 0; i<height; i++)memcpy(data + width*i, imgMat.data + imgMat.step*i, width);GenImage1(&Hobj, "byte", width, height, (Hlong)data);delete[] data;}return Hobj;
}

2.2 创建一个总执行的cpp

HalconDemo.cpp

#include <iostream>#include <halconcpp/HalconCpp.h>
#include <opencv2/opencv.hpp>using namespace HalconCpp;
using namespace std;
using namespace cv;// 将halcon图像转换为opencv的图像
Mat HImageToMat(HObject &imgHalcon)
{HTuple channels;HString cType;cv::Mat Image;ConvertImageType(imgHalcon, &imgHalcon, "byte");CountChannels(imgHalcon, &channels);Hlong width = 0;Hlong height = 0;if (channels[0].I() == 1){HImage hImg(imgHalcon);void *ptr = hImg.GetImagePointer1(&cType, &width, &height);//GetImagePointer1(Hobj, &ptr, &cType, &wid, &hgt);int W = width;int H = height;Image.create(H, W, CV_8UC1);unsigned char *pdata = static_cast<unsigned char *>(ptr);memcpy(Image.data, pdata, W*H);}else if (channels[0].I() == 3){void *Rptr;void *Gptr;void *Bptr;HImage hImg(imgHalcon);hImg.GetImagePointer3(&Rptr, &Gptr, &Bptr, &cType, &width, &height);int W = width;int H = height;Image.create(H, W, CV_8UC3);vector<cv::Mat> VecM(3);VecM[0].create(H, W, CV_8UC1);VecM[1].create(H, W, CV_8UC1);VecM[2].create(H, W, CV_8UC1);unsigned char *R = (unsigned char *)Rptr;unsigned char *G = (unsigned char *)Gptr;unsigned char *B = (unsigned char *)Bptr;memcpy(VecM[2].data, R, W*H);memcpy(VecM[1].data, G, W*H);memcpy(VecM[0].data, B, W*H);cv::merge(VecM, Image);}return Image;
}//OpenCV Mat -> Halcon HObject​
HObject MatToHImage(Mat &imgMat)
{HObject Hobj = HObject();int height = imgMat.rows;int width = imgMat.cols;int i;//  CV_8UC3if (imgMat.type() == CV_8UC3){vector<cv::Mat> imgchannel;split(imgMat, imgchannel);cv::Mat imgB = imgchannel[0];cv::Mat imgG = imgchannel[1];cv::Mat imgR = imgchannel[2];uchar* dataR = new uchar[height * width];uchar* dataG = new uchar[height * width];uchar* dataB = new uchar[height * width];for (i = 0; i<height; i++){memcpy(dataR + width*i, imgR.data + imgR.step*i, width);memcpy(dataG + width*i, imgG.data + imgG.step*i, width);memcpy(dataB + width*i, imgB.data + imgB.step*i, width);}GenImage3(&Hobj, "byte", width, height, (Hlong)dataR, (Hlong)dataG, (Hlong)dataB);delete[]dataR;delete[]dataG;delete[]dataB;}//  CV_8UCU1else if (imgMat.type() == CV_8UC1){uchar* data = new uchar[height*width];for (i = 0; i<height; i++)memcpy(data + width*i, imgMat.data + imgMat.step*i, width);GenImage1(&Hobj, "byte", width, height, (Hlong)data);delete[] data;}return Hobj;
}Mat shape_find(cv::Mat image_opencv)
{// Local iconic variablesHObject  ho_Image800, ho_ROI_0, ho_ImageReduced;HObject  ho_ImagePart, ho_ImageReduced1, ho_Imagetest, ho_rImage;HObject  ho_ImageAffineTrans, ho_SymbolXLDs;// Local control variablesHTuple  hv_Area, hv_RowModel, hv_ColumnModel;HTuple  hv_ModelID1, hv_StartSeconds, hv_Row, hv_Column;HTuple  hv_Angle, hv_Scale1, hv_Score1, hv_model, hv_EndSeconds;HTuple  hv_HomMat2DImage, hv_DataCodeHandle, hv_ResultHandles;HTuple  hv_DecodedDataStrings;cv::Mat image;//加上这句就可以了,因为画的模板框在旋转到右边和左边时超出了图像范围,要允许与边缘相交才能找到SetSystem("border_shape_models", "true");SetSystem("int_zooming", "true");//ReadImage(&ho_Image800, "../images/8.bmp");ho_Image800=MatToHImage(image_opencv);GenRectangle1(&ho_ROI_0, 2.06, 286.751, 1778.7, 2959.32);ReduceDomain(ho_Image800, ho_ROI_0, &ho_ImageReduced);CropDomain(ho_ImageReduced, &ho_ImagePart);GenRectangle1(&ho_ROI_0, 763.171, 559.159, 1444.96, 2025.97);ReduceDomain(ho_ImagePart, ho_ROI_0, &ho_ImageReduced1);AreaCenter(ho_ROI_0, &hv_Area, &hv_RowModel, &hv_ColumnModel);CreateScaledShapeModel(ho_ImageReduced1, "auto", HTuple(0).TupleRad(), HTuple(360).TupleRad(), HTuple(0.2).TupleRad(), 0.5, 2, "auto", "auto", "use_polarity", 40, 30, &hv_ModelID1);ReadImage(&ho_Imagetest, "../images/9.bmp");GenRectangle1(&ho_ROI_0, 2.06, 286.751, 1778.7, 2959.32);ReduceDomain(ho_Imagetest, ho_ROI_0, &ho_ImageReduced);CropDomain(ho_ImageReduced, &ho_rImage);CountSeconds(&hv_StartSeconds);FindScaledShapeModels(ho_rImage, hv_ModelID1, HTuple(0).TupleRad(), HTuple(360).TupleRad(), 0.5, 2, 0.4, 1, 1, "least_squares_high", (HTuple(5).Append(3)), 0.9, &hv_Row, &hv_Column, &hv_Angle, &hv_Scale1, &hv_Score1, &hv_model);CountSeconds(&hv_EndSeconds);if (0 != (int((hv_Row.TupleLength())>0))){std::cout << "find shape is ok " << endl;VectorAngleToRigid(HTuple(hv_Row[0]), HTuple(hv_Column[0]), hv_Angle, HTuple(hv_RowModel[0]), HTuple(hv_ColumnModel[0]), 0, &hv_HomMat2DImage);AffineTransImage(ho_rImage, &ho_ImageAffineTrans, hv_HomMat2DImage, "constant", "false");CreateDataCode2dModel("QR Code", HTuple(), HTuple(), &hv_DataCodeHandle);FindDataCode2d(ho_ImageAffineTrans, &ho_SymbolXLDs, hv_DataCodeHandle, HTuple(), HTuple(), &hv_ResultHandles, &hv_DecodedDataStrings);std::cout << "QR Code" << ":" << hv_DecodedDataStrings.S() << endl;image=HImageToMat(ho_ImageAffineTrans);}return image;
}int main()
{Mat image;Mat image_opencv = imread("../9.bmp");if (image_opencv.empty()) {std::cerr << "Error opening image!" << std::endl;return -1;}image=shape_find(image_opencv);cout<<"hello";std::string outputPath = "result.bmp"; imwrite(outputPath,image);return 0;
}

2.3 CMakeLists.txt

cmake_minimum_required(VERSION 3.0.0)
project(HalconDemo VERSION 0.1.0)set(TARGET_NAME HalconDemo)set(CMAKE_CXX_STANDARD 11)
set(CMAKE_CXX_STANDARD_REQUIRED True)
set(CMAKE_CXX_EXTENSIONS OFF)set(OpenCV_DIR "/usr/local/opencv470")  # 根据实际安装路径修改
find_package(OpenCV REQUIRED)
include_directories(${OpenCV_INCLUDE_DIRS})# 添加头文件搜索路径  
include_directories(include)link_directories(/opt/halcon/lib/aarch64-linux)aux_source_directory(. SRCS )set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS}  -static-libstdc++ -fPIC -Wl,--copy-dt-needed-entries -Wno-error=deprecated-declarations -Wno-deprecated-declarations ")# 寻找./src下面所有.cpp为后缀的源文件,并且保存到SRC变量里面  
file(GLOB_RECURSE SRC ./src/*.cpp)  # 编译SRC变量存储的源文件,编译生成目标文件命名为hello  
add_executable(hello ${SRC})
#add_library(hello SHARED src/HalconDemo.cpp)
target_link_libraries(hello halcon halconcpp hdevenginecpp)
target_link_libraries(hello ${OpenCV_LIBS}) 

2.4 编译及运行

mkdir build

cd build

cmake ..

make

./hello

http://www.xdnf.cn/news/71497.html

相关文章:

  • 十三种通信接口芯片——《器件手册--通信接口芯片》
  • 蓝桥杯2024省A.成绩统计
  • Linux进程5-进程通信常见的几种方式、信号概述及分类、kill函数及命令、语法介绍
  • Linux指令合集
  • 如何评估一个需求的测试时间
  • 《TCP/IP详解 卷1:协议》之第三章:IP:网际协议
  • 报告系统状态的连续日期 mysql + pandas(连续值判断)
  • 从「+AI」到「AI+」大模型正在抹平项目管理的“人工断层”
  • 为什么RPN生成的候选框,要使用rcnn来进行分类和回归操作?
  • 编译原理实验(四)———— LR(1)分析法
  • 实验七 shell程序设计
  • python生成动态库在c++中调用
  • 【JavaEE】计算机的工作原理
  • 乐家桌面纯净版刷机ROM下载 乐家桌面纯净版2025官方最新下载
  • 会话跟踪技术:让我们更懂用户
  • 使用stream进行列表循环和直接forEach循环的差异及使用场景
  • 环形缓冲区容量耗尽解决方案
  • 如何判断设备是否支持带电插拔——从原理到实操的全面解析
  • C# 运算符:?.(null 条件运算符)和 ??(null 合并运算符)
  • AI技术驱动SEO关键词策略革新
  • 接口测试流程和步骤
  • 基于SA模拟退火算法的车间调度优化matlab仿真,输出甘特图和优化收敛曲线
  • 【Andorid备案获取keystore里面的公钥和SHA-1码等等】
  • Linux——入门常用基础指令
  • 前端通过jenkins和docker打包部署流程
  • 爬虫获取sku信息需要哪些库
  • 入门-C编程基础部分:16、 预处理器
  • 如何动态调整Python爬虫的Request请求延迟
  • Java写数据结构:栈
  • MySQL《事务》