Leetcode 刷题记录 10 —— 二叉树
本系列为笔者的 Leetcode 刷题记录,顺序为 Hot 100 题官方顺序,根据标签命名,记录笔者总结的做题思路,附部分代码解释和疑问解答,01~07为C++语言,08及以后为Java语言。
01 二叉树的中序遍历
/*** Definition for a binary tree node.* public class TreeNode {* int val;* TreeNode left;* TreeNode right;* TreeNode() {}* TreeNode(int val) { this.val = val; }* TreeNode(int val, TreeNode left, TreeNode right) {* this.val = val;* this.left = left;* this.right = right;* }* }*/
class Solution {public List<Integer> inorderTraversal(TreeNode root) {}
}
方法一:递归
class Solution {public List<Integer> inorderTraversal(TreeNode root) {List<Integer> res = new ArrayList<>();inoder(root, res);return res;}public void inoder(TreeNode root, List<Integer> res){if(root == null){return;}//中序遍历inoder(root.left, res);res.add(root.val);inoder(root.right, res);}
}
如果一个方法的返回值是int
,那么调用这个方法的时候可以不写一个整数来接收int值,而是直接调用该方法吗?
是的!你完全可以直接调用一个返回值为 int
的方法,而不接收它返回的值**,编译和运行都不会报错,但具体是否这么写,取决于你有没有用到这个**返回值。
方法二:栈
class Solution {public List<Integer> inorderTraversal(TreeNode root) {List<Integer> res = new ArrayList<>();Deque<TreeNode> stk = new LinkedList<>();while(root != null || !stk.isEmpty()){while(root != null){stk.push(root); //压栈root = root.left;}root = stk.pop(); //弹栈res.add(root.val);root = root.right;}return res;}
}
方法三:Morris 中序遍历
class Solution {public List<Integer> inorderTraversal(TreeNode root) {List<Integer> res = new ArrayList<>();TreeNode pre = null;while(root != null){if(root.left != null){//1.寻找prepre = root.left;while(pre.right != null && pre.right != root){pre = pre.right;}//2.判断pre.rightif(pre.right == null){pre.right = root;root = root.left; //建链,左移}else{res.add(root.val);pre.right = null;root = root.right; //断链,右移}}else{res.add(root.val);root = root.right;}}return res;}
}
为什么要进行pre.right = null;
的断链处理?
pre.right = null;
的断链处理是为了恢复树的原始结构。这个算法使用了Morris中序遍历,它利用树中的空闲右指针来建立链接,从而避免使用额外的栈空间。
02 二叉树的最大深度
/*** Definition for a binary tree node.* public class TreeNode {* int val;* TreeNode left;* TreeNode right;* TreeNode() {}* TreeNode(int val) { this.val = val; }* TreeNode(int val, TreeNode left, TreeNode right) {* this.val = val;* this.left = left;* this.right = right;* }* }*/
class Solution {public int maxDepth(TreeNode root) {}
}
方法一:递归
class Solution {public int maxDepth(TreeNode root) {if(root == null){return 0;}int leftHeight = maxDepth(root.left);int rightHeight = maxDepth(root.right);return Math.max(leftHeight, rightHeight) + 1;}
}
Math.max
啥意思?
Math.max
是 Java 中 Math
类的一个静态方法,它用于返回两个给定数中的最大值。
方法二:广度优先搜索
class Solution {public int maxDepth(TreeNode root) {if(root == null){return 0;}//广度优先遍历 queueQueue<TreeNode> queue = new LinkedList<>();queue.offer(root);int answer = 0;while(!queue.isEmpty()){//a.获取该行长度int size = queue.size();while(size > 0){//b.遍历该行所有结点,添加所有孩子结点TreeNode node = queue.poll();if(node.left != null){queue.offer(node.left);}if(node.right != null){queue.offer(node.right);}size--;}//c.每遍历一行,answer加一answer++;}return answer;}
}
03 翻转二叉树
/*** Definition for a binary tree node.* public class TreeNode {* int val;* TreeNode left;* TreeNode right;* TreeNode() {}* TreeNode(int val) { this.val = val; }* TreeNode(int val, TreeNode left, TreeNode right) {* this.val = val;* this.left = left;* this.right = right;* }* }*/
class Solution {public TreeNode invertTree(TreeNode root) {}
}
方法一:递归
class Solution {public TreeNode invertTree(TreeNode root) {//0.特殊情况判断if(root == null){return root;}//1.获取左右孩子指针TreeNode left = invertTree(root.left);TreeNode right = invertTree(root.right);//2.交换左右孩子指针root.left = right;root.right = left;return root;}
}
04 对称二叉树
/*** Definition for a binary tree node.* public class TreeNode {* int val;* TreeNode left;* TreeNode right;* TreeNode() {}* TreeNode(int val) { this.val = val; }* TreeNode(int val, TreeNode left, TreeNode right) {* this.val = val;* this.left = left;* this.right = right;* }* }*/
class Solution {public boolean isSymmetric(TreeNode root) {}
}
方法一:递归
class Solution {public boolean isSymmetric(TreeNode root) {if (root == null) {return true;}return check(root.left, root.right);}public boolean check(TreeNode p, TreeNode q){if(p == null && q == null){return true;}if(p == null || q == null){return false;}return p.val == q.val && check(p.left, q.right) && check(p.right, q.left);}
}
① 如果TreeNode root
为null
咋办,根本就没有root.left
和root.right
吧?
如果 root
为 null
,那么传递给 check(root.left, root.right)
的参数就是 check(null, null)
。
② 为什么if(p == null && q == null)
之后直接return true;
,万一还有别的结点没有检查呢,直接就返回正确吗?
当递归到底叶子节点时,不存在还未检查的节点,因为递归调用本身会遍历所有对应的节点对。
方法二:队列
class Solution {public boolean isSymmetric(TreeNode root) {return check(root, root);}public boolean check(TreeNode u, TreeNode v){//1.创建并加入队列,头结点Queue<TreeNode> queue = new LinkedList<>();queue.offer(u);queue.offer(v);while(!queue.isEmpty()){//2.移出队列,判断结点状况u = queue.poll();v = queue.poll();if(u == null && v == null){continue;}if((u == null || v == null) || u.val != v.val){return false;}//3.加入队列,左右孩子结点queue.offer(u.left);queue.offer(v.right);queue.offer(u.right);queue.offer(v.left);}return true;}
}
为什么u == null && v == null
成立要进行continue
,而不是直接返回true
?
如果 u == null && v == null
,这意味着当前的两个节点都是空的,但这只是树的一部分,整体是否对称还需要继续检查其他节点,只有在所有节点都已经处理并且没有发现不对称时,才会返回 true
。
05 二叉树的直径
/*** Definition for a binary tree node.* public class TreeNode {* int val;* TreeNode left;* TreeNode right;* TreeNode() {}* TreeNode(int val) { this.val = val; }* TreeNode(int val, TreeNode left, TreeNode right) {* this.val = val;* this.left = left;* this.right = right;* }* }*/
class Solution {public int diameterOfBinaryTree(TreeNode root) {}
}
方法一:递归
class Solution {int ans = 0;public int diameterOfBinaryTree(TreeNode root) {depth(root);return ans-1;}public int depth(TreeNode root){if(root == null){return 0;}int L = depth(root.left);int R = depth(root.right);ans = Math.max(ans, L + R + 1);return Math.max(L, R) + 1;}
}