Athena 执行引擎:在线服务计算的效率王者
引言
在在线服务领域,计算任务呈现出独特的特性:一方面,数据量通常不会过于庞大,因为在线服务对耗时和响应速度有着严苛要求;另一方面,计算任务具有可控性,其大多并非由用户实时输入动态生成,属于有限集合,因此能够进行预编译处理。在这样的背景下,传统的向量化引擎如 velox,可能会因数据在行存与列存之间转换产生的额外开销,导致性能不增反降;而解释性引擎也无法充分发挥预编译带来的效率优势。
athena 执行引擎正是为了在上述场景中实现极致性能而诞生。此前笔者介绍的 jitfusion 引擎:https://blog.csdn.net/qq_34262582/article/details/145496431?spm=1001.2014.3001.5501。
在列表类型计算和优化方面存在不足,且缺乏便捷的类脚本语言描述执行过程。经过持续完善与优化,athena 应运而生,用户能够通过简洁的 DSL 描述执行逻辑。本文将深入剖析 athena 的设计架构、核心优化特性,并通过严谨的 benchmark 对比,展现其相较于 exprtk 和 gandiva 的性能优势。
设计架构:灵活接口与简洁 DSL
接口设计
首先 athena 提供的对外接口是这样的。
// Applicable to simple scenarios, the program will not actually use a custom store function to write data. Instead,// the result will be returned, similar to expression scenarios.// If you need to optimize the memory allocation issue of ExecContext, you can use the function passed to ExecContext.Status Compile(const std::string& code, const std::unique_ptr<FunctionRegistry>& func_registry);Status Execute(void* entry_arguments, RetType* result);Status Execute(ExecContext& exec_ctx, void* entry_arguments, RetType* result);// Applicable to complex scenarios where multiple pipelines are computed simultaneously. Each pipeline writes data// using a custom function, and results are not returned. This is similar to feature processing scenarios.// If you need to optimize the memory allocation issue of ExecContext, you can use the function passed to ExecContext.Status Compile(const std::vector<std::string>& code, const std::unique_ptr<FunctionRegistry>& func_registry);Status Execute(void* entry_arguments, void* result);Status Execute(ExecContext& exec_ctx, void* entry_arguments, void* result);
其中,Compile接口负责编译 DSL 代码,只有完成编译后,才能通过 Execute 接口执行任务,且 Execute 接口具备线程安全特性。code 为 DSL 代码,func_registry 用于函数注册,entry_arguments 接收用户输入,result 存储输出结果,exec_ctx 则作为执行上下文,默认情况下即使不传入也会自动生成。
这个设计有几个好处。
1.通过传入 func_registry,可避免重复的函数注册操作,适用于函数注册相对固定的服务场景。
2.用户能够自由定义输入输出,无需按照引擎规则重组数据,从而有效降低执行成本。
3.用户可通过传入 exec_ctx,实现自定义的内存池化逻辑,减少频繁内存分配带来的性能损耗。
4.支持同时编译多个计算 pipeline,能够自动识别并优化重复计算路径,尤其适用于特征工程等复杂场景。
当用户使用第一组函数来执行时,result 会得到最后一行代码返回的结果。使用第二组函数来执行时,result 需要用户调用自定义的函数来把结果写到传入的 result 指针,此时无法通过最后一行代码返回得到结果。
DSL
athena 的 DSL 遵循简洁易用的设计原则,其核心规则如下:
1.执行过程由 statement 组成,每个 statement 的分隔符是’;'号。
2.statement 的格式必须按以下方式构造:{ID} = {Expression},其中 ID 表示变量名,Expression 是一个表达式。
3.除了支持各种运算操作外,表达式还支持几种特殊语法。函数语法:{function_name}({arg1}, {arg2}, …)。它还支持 switch 语句和 if 语句。遵循简洁原则,switch 语句和 if 语句的语法与函数语法类似:if({condition}, {true_expression}, {false_expression}),switch({case1}, {value1}, {case2}, {value2}…, {default_value})。
4.用户可通过 entry_arg 访问输入参数指针,exec_ctx 访问执行上下文,output 访问输出参数指针。
核心优化:性能提升的关键
athena 内部有很多优化,下面来一一讲解。
Constant folding
athena 会在编译阶段自动计算可确定的常量表达式。例如:
int main() {athena::Athena athena;std::unique_ptr<athena::FunctionRegistry> func_registry;athena::FunctionRegistryFactory::CreateFunctionRegistry(&func_registry);std::string code = R"(r = 2 * 3 + 4;)";std::vector<double> r(3);auto st = athena.Compile(code, func_registry);athena::RetType ret;athena.Execute(nullptr, &ret);std::cout << std::get<int32_t>(ret) << "\n";return 0;
}
计算 2 * 3 + 4, 得到的中间代码是这样的。
; ModuleID = 'module'
source_filename = "module"
target datalayout = "e-m:o-i64:64-i128:128-n32:64-S128-Fn32"; Function Attrs: mustprogress nofree norecurse nosync nounwind willreturn memory(none)
define noundef i32 @entry(ptr noalias nocapture readonly %0, ptr noalias nocapture readnone %1, ptr noalias nocapture readnone %2) local_unnamed_addr #0 {
entryBB:ret i32 10
}attributes #0 = { mustprogress nofree norecurse nosync nounwind willreturn memory(none) }
编译后的中间代码直接返回结果10,避免了运行时的重复计算。
Dead code elimination
引擎能够识别并删除对最终结果无影响的代码。比如:
int main() {athena::Athena athena;std::unique_ptr<athena::FunctionRegistry> func_registry;athena::FunctionRegistryFactory::CreateFunctionRegistry(&func_registry);std::string code = R"(a = 2 * 3 + 4;b = 100 * 100;c = a * 2;)";std::vector<double> r(3);auto st = athena.Compile(code, func_registry);athena::RetType ret;athena.Execute(nullptr, &ret);std::cout << std::get<int32_t>(ret) << "\n";return 0;
}
由于仅最后一行代码的结果被返回,“b = 100 * 100;” 被认定为死代码,编译时自动剔除。
; ModuleID = 'module'
source_filename = "module"
target datalayout = "e-m:o-i64:64-i128:128-n32:64-S128-Fn32"; Function Attrs: mustprogress nofree norecurse nosync nounwind willreturn memory(none)
define noundef i32 @entry(ptr noalias nocapture readonly %0, ptr noalias nocapture readnone %1, ptr noalias nocapture readnone %2) local_unnamed_addr #0 {
entryBB:ret i32 20
}attributes #0 = { mustprogress nofree norecurse nosync nounwind willreturn memory(none) }
Static Typing Language
athena 的 DSL 作为静态类型语言,athena 在编译期确定所有变量类型,能够进行严格的类型安全检查。
比如说除0。此时编译会失败,输出错误信息。
int main() {athena::Athena athena;std::unique_ptr<athena::FunctionRegistry> func_registry;athena::FunctionRegistryFactory::CreateFunctionRegistry(&func_registry);std::string code = R"(a = 1 / 0;)";std::vector<double> r(3);auto st = athena.Compile(code, func_registry);std::cout << st.ToString() << std::endl;return 0;
}
Parse Error: Cant no div/mod zero
或者是浮点数位运算。
int main() {athena::Athena athena;std::unique_ptr<athena::FunctionRegistry> func_registry;athena::FunctionRegistryFactory::CreateFunctionRegistry(&func_registry);std::string code = R"(a = 1.0 & 2.0;)";std::vector<double> r(3);auto st = athena.Compile(code, func_registry);std::cout << st.ToString() << std::endl;return 0;
}
Runtime Error: Module verification failed: Logical operators only work with integral types!%3 = and double 1.000000e+00, 2.000000e+00
又或者是函数调用的时候类型不匹配。
int main() {athena::Athena athena;std::unique_ptr<athena::FunctionRegistry> func_registry;athena::FunctionRegistryFactory::CreateFunctionRegistry(&func_registry);std::string code = R"(a = Len(1.0);)";std::vector<double> r(3);auto st = athena.Compile(code, func_registry);std::cout << st.ToString() << std::endl;return 0;
}
Runtime Error: function Len(f64) not found
这些都可以在编译期做检查来避免一些简单的错误。
Short-Circuit Evaluation
athena 优化条件语句实现,仅执行必要分支。举例:
double LoadF64(void* entry_arguments, int32_t index) {auto* args = reinterpret_cast<double*>(entry_arguments);return args[index];
}void bench_short_path(benchmark::State& state) {athena::Athena athena;std::unique_ptr<athena::FunctionRegistry> func_registry;athena::FunctionRegistryFactory::CreateFunctionRegistry(&func_registry);athena::FunctionSignature sign("load", {athena::ValueType::kPtr, athena::ValueType::kI32}, athena::ValueType::kF64);func_registry->RegisterReadOnlyCFunc(sign, reinterpret_cast<void*>(LoadF64));std::string code = R"(v1 = load(entry_arg, 0);v2 = load(entry_arg, 1);r = if(v1 + v2 < 100000000, floor(log2(1 + v1 + v2)), 27.0);)";athena.Compile(code, func_registry);athena::RetType ret;std::vector<double> value = {100000000, 100000000};for (auto _ : state) {athena.Execute(value.data(), &ret);}// std::cout << "ret=" << std::get<double>(ret) << '\n';
}void bench_run_all_path(benchmark::State& state) {athena::Athena athena;std::unique_ptr<athena::FunctionRegistry> func_registry;athena::FunctionRegistryFactory::CreateFunctionRegistry(&func_registry);athena::FunctionSignature sign("load", {athena::ValueType::kPtr, athena::ValueType::kI32}, athena::ValueType::kF64);func_registry->RegisterReadOnlyCFunc(sign, reinterpret_cast<void*>(LoadF64));std::string code = R"(v1 = load(entry_arg, 0);v2 = load(entry_arg, 1);r = max(floor(log2(1 + v1 + v2)), 27.0);)";athena.Compile(code, func_registry);athena::RetType ret;std::vector<double> value = {100000000, 100000000};for (auto _ : state) {athena.Execute(value.data(), &ret);}// std::cout << "ret=" << std::get<double>(ret) << '\n';
}
BENCHMARK(bench_short_path);
BENCHMARK(bench_run_all_path);
BENCHMARK_MAIN();
这段代码从逻辑上来说不能完全等价, 但我们关注的是 if 语句和 max 函数的区别, if 在 athena 里的实现只会执行其中一个分支, 而 max 需要把所有分支执行完后比较, 从这个case上来说第一个 benchmark 不会走 log 函数,会直接返回 27,第二个 benchmark 则要执行 log 函数,笔者找了一台执行 log 数学函数比较慢的机器上跑的结果如下:
Common Subexpression Elimination
自动识别并合并相同计算路径。无论是简单的变量计算,还是符合规则的函数调用,只要计算逻辑相同,athena 均会合并计算。
比如,下面这个例子里,显然 add1 和 add2 是一样的。
double LoadF64(void* entry_arguments, int32_t index) {auto* args = reinterpret_cast<double*>(entry_arguments);return args[index];
}int main() {athena::Athena athena;std::unique_ptr<athena::FunctionRegistry> func_registry;athena::FunctionRegistryFactory::CreateFunctionRegistry(&func_registry);athena::FunctionSignature sign("load", {athena::ValueType::kPtr, athena::ValueType::kI32}, athena::ValueType::kF64);func_registry->RegisterReadOnlyCFunc(sign, reinterpret_cast<void*>(LoadF64));std::string code = R"(v1 = load(entry_arg, 0);v2 = load(entry_arg, 1);add1 = v1 + v2;add2 = v1 + v2;add3 = add1 + add2;)";std::vector<double> value = {100000000, 100000000};auto st = athena.Compile(code, func_registry);std::cout << st.ToString() << '\n';return 0;
}
它编译出来的中间代码则只会计算一次 v1 + v2。
; ModuleID = 'module'
source_filename = "module"
target datalayout = "e-m:o-i64:64-i128:128-n32:64-S128-Fn32"; Function Attrs: nofree nounwind memory(read)
define double @entry(ptr noalias readonly %0, ptr noalias nocapture readnone %1, ptr noalias nocapture readnone %2) local_unnamed_addr #0 {
entryBB:%call_load = tail call double @"load(ptr, i32)"(ptr %0, i32 0)%call_load1 = tail call double @"load(ptr, i32)"(ptr %0, i32 1)%3 = fadd double %call_load, %call_load1%4 = fadd double %3, %3ret double %4
}; Function Attrs: nofree nounwind memory(read)
declare double @"load(ptr, i32)"(ptr, i32) local_unnamed_addr #0attributes #0 = { nofree nounwind memory(read) }
可能你会想知道如果是函数调用,是否可以合并。不考虑直接使用 LLVM API 实现的 intrinic function,只考虑 C 函数的话,在 athena 里遵循一定的规则就可以合并。
athena 推荐用户将函数分为两类,一种 read only function,一种是 store function,对应的注册接口如下:
// Register ReadOnlyCFuncStatus RegisterReadOnlyCFunc(const FunctionSignature &func_sign, void *c_func_ptr);// Register StoreCFunc// store_args_index is the index of the args in the function signature that is OuputNodeStatus RegisterStoreCFunc(const FunctionSignature &func_sign, void *c_func_ptr, uint32_t store_args_index);
在 athena 里只要函数不直接修改入参的变量,通过生成新的变量返回函数结果,堆内存分配通过 exec_ctx 分配(该行为不被认为是修改入参),则可以被认为是 read only function。把计算结果通过 output 指针写到用户定义的区域,以便用户在引擎执行完后可以获取到结果,这类函数被认为是 store function。在计算任务里,大体都可以被拆成这两种函数。假设执行过程中只会有这两种函数,则 athena 也会合并相同的计算。举例:
athena::I32ListStruct LoadI32List(void* entry_arguments, int32_t index) {auto* args = reinterpret_cast<std::vector<int32_t>*>(entry_arguments);athena::I32ListStruct result;result.data = args[index].data();result.len = args[index].size();return result;
}int32_t StoreI32List(void* output, int32_t index, athena::I32ListStruct value) {auto store_i = reinterpret_cast<std::vector<int32_t>*>(output)[index];store_i.resize(value.len);std::copy_n(value.data, value.len, store_i.begin());return 0;
}int main() {athena::Athena athena;std::unique_ptr<athena::FunctionRegistry> func_registry;athena::FunctionRegistryFactory::CreateFunctionRegistry(&func_registry);athena::FunctionSignature sign1("load", {athena::ValueType::kPtr, athena::ValueType::kI32},athena::ValueType::kI32List);func_registry->RegisterReadOnlyCFunc(sign1, reinterpret_cast<void*>(LoadI32List));athena::FunctionSignature sign2("store",{athena::ValueType::kPtr, athena::ValueType::kI32, athena::ValueType::kI32List},athena::ValueType::kI32);func_registry->RegisterStoreCFunc(sign2, reinterpret_cast<void*>(StoreI32List), 1);std::string code = R"(a = load(entry_arg, 0);b = GenLargeBitmap(a, 3, exec_ctx);c = load(entry_arg, 1);r1 = store(output, 0, FilterByBitmap(a, b, CountBits(b), exec_ctx));r2 = store(output, 1, FilterByBitmap(c, b, CountBits(b), exec_ctx));)";auto st = athena.Compile(std::vector<std::string>{code}, func_registry);std::cout << st.ToString() << '\n';return 0;
}
这段代码从 entry_arg 里加载了两个 i32list 命名为 a, c,然后生成一个 a > 3 的位图,根据这个位图过滤 a,c,得到的结果写入到 output 里。这段代码编译后的中间代码表示是这样的。
; ModuleID = 'module'
source_filename = "module"
target datalayout = "e-m:o-i64:64-i128:128-n32:64-S128-Fn32"%I32ListStruct = type { ptr, i32 }
%U8ListStruct = type { ptr, i32 }; Function Attrs: nounwind memory(read, argmem: readwrite)
define noundef i8 @entry(ptr noalias readonly %0, ptr noalias %1, ptr noalias nocapture %2) local_unnamed_addr #0 {
entryBB:%call_load = tail call %I32ListStruct @"load(ptr, i32)"(ptr %0, i32 0)%call_GenLargeBitmap = tail call %U8ListStruct @"GenLargeBitmap(i32list, i32, ptr)"(%I32ListStruct %call_load, i32 3, ptr %1)%call_CountBits = tail call i32 @"CountBits(u8list)"(%U8ListStruct %call_GenLargeBitmap)%call_FilterByBitmap = tail call %I32ListStruct @"FilterByBitmap(i32list, u8list, u32, ptr)"(%I32ListStruct %call_load, %U8ListStruct %call_GenLargeBitmap, i32 %call_CountBits, ptr %1)%call_store = tail call i32 @"store(ptr, i32, i32list)"(ptr %2, i32 0, %I32ListStruct %call_FilterByBitmap)%call_load4 = tail call %I32ListStruct @"load(ptr, i32)"(ptr %0, i32 1)%call_FilterByBitmap10 = tail call %I32ListStruct @"FilterByBitmap(i32list, u8list, u32, ptr)"(%I32ListStruct %call_load4, %U8ListStruct %call_GenLargeBitmap, i32 %call_CountBits, ptr %1)%call_store11 = tail call i32 @"store(ptr, i32, i32list)"(ptr %2, i32 1, %I32ListStruct %call_FilterByBitmap10)ret i8 0
}; Function Attrs: nofree nounwind memory(read)
declare %I32ListStruct @"load(ptr, i32)"(ptr, i32) local_unnamed_addr #1; Function Attrs: nofree nounwind memory(read)
declare %U8ListStruct @"GenLargeBitmap(i32list, i32, ptr)"(%I32ListStruct, i32, ptr) local_unnamed_addr #1; Function Attrs: nofree nounwind memory(read)
declare i32 @"CountBits(u8list)"(%U8ListStruct) local_unnamed_addr #1; Function Attrs: nofree nounwind memory(read)
declare %I32ListStruct @"FilterByBitmap(i32list, u8list, u32, ptr)"(%I32ListStruct, %U8ListStruct, i32, ptr) local_unnamed_addr #1; Function Attrs: nounwind memory(argmem: readwrite)
declare i32 @"store(ptr, i32, i32list)"(ptr noalias nocapture, i32, %I32ListStruct) local_unnamed_addr #2attributes #0 = { nounwind memory(read, argmem: readwrite) }
attributes #1 = { nofree nounwind memory(read) }
attributes #2 = { nounwind memory(argmem: readwrite) }
GenLargeBitmap 是相同的计算,所以只执行了一次,CountBits 也是相同的计算,也只执行了一次。
Vectorization
athena 里对 list 类型的函数做了很多优化,大部分的代码都是自动向量化友好的,依赖编译器可以很好的适配多平台。然而对于一些数学函数比如 log 这种,大部分的情况下编译器都无法使用自动向量化,要依赖向量化数学库。athena 引入了 xsimd 来解决多平台数学库向量化的问题。同样的,我们拿一段代码举例:
static std::mt19937_64 rng(std::random_device{}());
static std::uniform_real_distribution<double> dist(0, 1e8);std::vector<double> GenInputs() {std::vector<double> inputs;inputs.reserve(1000);for (int i = 0; i < 1000; ++i) {inputs.emplace_back(dist(rng));}return inputs;
}static std::vector<double> inputs = GenInputs();athena::F64ListStruct Load(void* entry_arguments) {auto* args = reinterpret_cast<std::vector<double>*>(entry_arguments);athena::F64ListStruct result;result.data = args->data();result.len = args->size();return result;
}void bench_cpp_code(benchmark::State& state) {std::vector<double> result;result.resize(inputs.size());for (auto _ : state) {for (int i = 0; i < inputs.size(); i++) {result[i] = std::log(inputs[i]);}}// for (auto v : result) {// std::cout << v << '\n';// }
}void bench_athena_vectorization(benchmark::State& state) {athena::Athena athena;std::unique_ptr<athena::FunctionRegistry> func_registry;athena::FunctionRegistryFactory::CreateFunctionRegistry(&func_registry);athena::FunctionSignature sign1("load", {athena::ValueType::kPtr}, athena::ValueType::kF64List);func_registry->RegisterReadOnlyCFunc(sign1, reinterpret_cast<void*>(Load));std::string code = R"(r = ListLog(load(entry_arg), exec_ctx);)";auto st = athena.Compile(code, func_registry);athena::RetType ret;athena::ExecContext exec_ctx(4096);for (auto _ : state) {athena.Execute(exec_ctx, &inputs, &ret);}auto result = std::get<std::vector<double>>(ret);// for (auto v : result) {// std::cout << v << '\n';// }
}
BENCHMARK(bench_cpp_code);
BENCHMARK(bench_athena_vectorization);
BENCHMARK_MAIN();
这里是用的 gcc7 -O2 -ftree-vectorize 编译的,结果如下:
Benchmark
总的来说,athena 做了很多优化,那么它与其他的开源执行引擎对比性能怎样呢?这里笔者挑选了 exprtk,gandiva 来测试,本来还想加入 velox 的,但 velox 的依赖库太多,编译起来比较麻烦,有兴趣的朋友可以自己尝试对比一下。
这里选取一个业务正在用的一个表达式来测试,“if(v1 + v2 < 100000000, floor(log10(1 + v1 + v2)), 27.0)”。涵盖了条件语句和数学运算,由于gandiva 是列存引擎,我们将进行不同 batch 的测试,又因为 exprtk 只支持浮点数,所以这里均使用 double 类型测试。代码如下:
#include "benchmark/benchmark.h"
#include <chrono>
#include <cstddef>
#include <iostream>
#include <random>
#include "arrow/array/array_base.h"
#include "arrow/array/builder_base.h"
#include "arrow/record_batch.h"
#include "arrow/status.h"
#include "arrow/type_fwd.h"
#include "athena/athena.h"
#include "exec_engine.h"
#include "gandiva/expression.h"
#include "gandiva/gandiva_aliases.h"
#include "gandiva/parser.h"
#include "gandiva/projector.h"
#include "gandiva/tree_expr_builder.h"
#include "riemann/3rd/exprtk/exprtk.hpp"
#include "type.h"namespace {
std::mt19937_64 rng(std::chrono::steady_clock::now().time_since_epoch().count());
std::uniform_real_distribution<double> eng_f64(0, 1e8);struct TestInput {double v1;double v2;
};constexpr size_t kBatchSize = 100000;
std::vector<TestInput> GenInputs() {std::vector<TestInput> inputs;for (int i = 0; i < kBatchSize; ++i) {TestInput input{.v1 = eng_f64(rng), .v2 = eng_f64(rng)};// std::cout << "v1=" << input.v1 << " v2=" << input.v2 << '\n';inputs.emplace_back(input);}return inputs;
}std::vector<TestInput> inputs = GenInputs();struct TestInputVec {std::vector<double> v1;std::vector<double> v2;
};void bench_exprtk_expr(benchmark::State &state) {typedef exprtk::symbol_table<double> symbol_table_t;typedef exprtk::expression<double> expression_t;typedef exprtk::parser<double> parser_t;typedef exprtk::parser_error::type error_t;std::string expression_str = "if(v1 + v2 < 100000000, floor(log10(1 + v1 + v2)), 27.0)";symbol_table_t symbol_table;symbol_table.add_constants();double s1;double s2;symbol_table.add_variable("v1", s1);symbol_table.add_variable("v2", s2);expression_t expression;expression.register_symbol_table(symbol_table);parser_t parser;parser.compile(expression_str, expression);double ans;const int batch_size = state.range(0);for (auto _ : state) {for (int i = 0; i < batch_size; i++) {s1 = inputs[i].v1;s2 = inputs[i].v2;ans = expression.value();}}// std::cout << ans << '\n';
}double LoadV1(void *entry_args) { return reinterpret_cast<TestInput *>(entry_args)->v1; }double LoadV2(void *entry_args) { return reinterpret_cast<TestInput *>(entry_args)->v2; }void bench_athena(benchmark::State &state) {athena::Athena athena;std::unique_ptr<jitfusion::FunctionRegistry> func_registry;jitfusion::FunctionRegistryFactory::CreateFunctionRegistry(&func_registry);jitfusion::FunctionSignature sign1("LoadV1", {jitfusion::ValueType::kPtr}, jitfusion::ValueType::kF64);func_registry->RegisterReadOnlyCFunc(sign1, reinterpret_cast<void *>(LoadV1));jitfusion::FunctionSignature sign2("LoadV2", {jitfusion::ValueType::kPtr}, jitfusion::ValueType::kF64);func_registry->RegisterReadOnlyCFunc(sign2, reinterpret_cast<void *>(LoadV2));std::string code = R"(v1 = LoadV1(entry_arg);v2 = LoadV2(entry_arg);r = if(v1 + v2 < 100000000, floor(log10(1 + v1 + v2)), 27.0);)";athena.Compile(code, func_registry);jitfusion::RetType ret;athena::ExecContext exec_ctx(4096);const int batch_size = state.range(0);for (auto _ : state) {for (int i = 0; i < batch_size; i++) {athena.Execute(exec_ctx, &inputs[i], &ret);}}// std::cout << std::get<double>(ret) << '\n';
}void PrintSimple(const std::vector<std::shared_ptr<arrow::Array>> &arrays) {// std::cout << arrays.size() << std::endl;for (const auto &i : arrays) {const auto &array = std::static_pointer_cast<arrow::DoubleArray>(i);for (int i = 0; i < array->length(); i++) {std::cout << "value " << i << "=" << array->raw_values()[i] << '\n';}}
}void bench_gandiva(benchmark::State &state) {std::string expr_str = "if(v1 + v2 < 100000000, floor(log10(1 + v1 + v2)), 27.0)";// prep gandivaauto field_v1_type = arrow::field("v1", arrow::float64());auto field_v2_type = arrow::field("v2", arrow::float64());auto v1 = gandiva::TreeExprBuilder::MakeField(field_v1_type);auto v2 = gandiva::TreeExprBuilder::MakeField(field_v2_type);auto v1_add_v2 = gandiva::TreeExprBuilder::MakeFunction("add", {v1, v2}, arrow::float64());auto literal_1 = gandiva::TreeExprBuilder::MakeLiteral(1.0);auto v1_add_v2_add_1 = gandiva::TreeExprBuilder::MakeFunction("add", {v1_add_v2, literal_1}, arrow::float64());auto log10_result = gandiva::TreeExprBuilder::MakeFunction("log10", {v1_add_v2_add_1}, arrow::float64());auto floor_result = gandiva::TreeExprBuilder::MakeFunction("floor", {log10_result}, arrow::float64());auto literal_100000000 = gandiva::TreeExprBuilder::MakeLiteral(100000000.0);auto literal_27 = gandiva::TreeExprBuilder::MakeLiteral(27.0);auto cmp = gandiva::TreeExprBuilder::MakeFunction("less_than", {v1_add_v2, literal_100000000}, arrow::boolean());auto conditional = gandiva::TreeExprBuilder::MakeIf(cmp, floor_result, literal_27, arrow::float64());// auto conditional = gandiva::TreeExprBuilder::MakeIf(cmp, v1_add_v2, literal_27, arrow::float64());auto field_result = arrow::field("result", arrow::float64());auto gandiva_expr = gandiva::TreeExprBuilder::MakeExpression(conditional, field_result);auto schema = arrow::schema({field_v1_type, field_v2_type});// std::cout << "expr: " << gandiva_expr->ToString() << '\n';// std::cout << "schema: " << schema->ToString() << std::endl;// std::cout << "schema metadata: " << schema->ToString(true) << std::endl;std::shared_ptr<gandiva::Projector> projector;auto status = gandiva::Projector::Make(schema, {gandiva_expr}, &projector);if (!status.ok()) {std::cout << status.ToString() << '\n';return;}std::vector<std::shared_ptr<arrow::Array>> input_arr(2);const int batch_size = state.range(0);arrow::DoubleBuilder builder;auto ret = builder.Reserve(batch_size);std::vector<double> v1s;v1s.reserve(batch_size);for (int i = 0; i < batch_size; i++) {v1s.emplace_back(inputs[i].v1);}ret = builder.AppendValues(v1s);ret = builder.Finish(input_arr.data());builder.Reset();std::vector<double> v2s;v2s.reserve(batch_size);for (int i = 0; i < batch_size; i++) {v2s.emplace_back(inputs[i].v2);}ret = builder.AppendValues(v2s);ret = builder.Finish(&input_arr[1]);auto *pool = arrow::default_memory_pool();// std::cout << pool->backend_name() << std::endl;auto in_batch = arrow::RecordBatch::Make(schema, batch_size, input_arr);arrow::ArrayVector outputs;for (auto _ : state) {projector->Evaluate(*in_batch, pool, &outputs);}// PrintSimple(input_arr);// PrintSimple(outputs);// std::cout << "value =" << std::static_pointer_cast<arrow::DoubleArray>(outputs[0])->raw_values()[batch_size - 1]// << '\n';
}BENCHMARK(bench_exprtk_expr)->RangeMultiplier(10)->Range(10, kBatchSize);
BENCHMARK(bench_athena)->RangeMultiplier(10)->Range(10, kBatchSize);
BENCHMARK(bench_gandiva)->RangeMultiplier(10)->Range(10, kBatchSize);} // namespaceBENCHMARK_MAIN();
这里特别优待了 gandiva,没有把数据从行转列的重组过程开销算进来,因为这个转换效率实现因人而异,并且不同场景也有所不同。那么这次的 benchmark 结果如下。
首先是 athena 全部比 exprtk 要快,然后随着 batch 提高,gandiva 逐渐超过了 athena,但并没有拉开太大的差距,刚刚说过这里没有把数据转换给算进来,那如果算进来的话会怎样呢?
#include "benchmark/benchmark.h"
#include <chrono>
#include <cstddef>
#include <iostream>
#include <random>
#include "arrow/array/array_base.h"
#include "arrow/array/builder_base.h"
#include "arrow/record_batch.h"
#include "arrow/status.h"
#include "arrow/type_fwd.h"
#include "athena/athena.h"
#include "exec_engine.h"
#include "gandiva/expression.h"
#include "gandiva/gandiva_aliases.h"
#include "gandiva/parser.h"
#include "gandiva/projector.h"
#include "gandiva/tree_expr_builder.h"
#include "riemann/3rd/exprtk/exprtk.hpp"
#include "type.h"namespace {
std::mt19937_64 rng(std::chrono::steady_clock::now().time_since_epoch().count());
std::uniform_real_distribution<double> eng_f64(0, 1e8);struct TestInput {double v1;double v2;
};constexpr size_t kBatchSize = 100000;
std::vector<TestInput> GenInputs() {std::vector<TestInput> inputs;for (int i = 0; i < kBatchSize; ++i) {TestInput input{.v1 = eng_f64(rng), .v2 = eng_f64(rng)};// std::cout << "v1=" << input.v1 << " v2=" << input.v2 << '\n';inputs.emplace_back(input);}return inputs;
}std::vector<TestInput> inputs = GenInputs();struct TestInputVec {std::vector<double> v1;std::vector<double> v2;
};void bench_exprtk_expr(benchmark::State &state) {typedef exprtk::symbol_table<double> symbol_table_t;typedef exprtk::expression<double> expression_t;typedef exprtk::parser<double> parser_t;typedef exprtk::parser_error::type error_t;std::string expression_str = "if(v1 + v2 < 100000000, floor(log10(1 + v1 + v2)), 27.0)";symbol_table_t symbol_table;symbol_table.add_constants();double s1;double s2;symbol_table.add_variable("v1", s1);symbol_table.add_variable("v2", s2);expression_t expression;expression.register_symbol_table(symbol_table);parser_t parser;parser.compile(expression_str, expression);double ans;const int batch_size = state.range(0);for (auto _ : state) {for (int i = 0; i < batch_size; i++) {s1 = inputs[i].v1;s2 = inputs[i].v2;ans = expression.value();}}// std::cout << ans << '\n';
}double LoadV1(void *entry_args) { return reinterpret_cast<TestInput *>(entry_args)->v1; }double LoadV2(void *entry_args) { return reinterpret_cast<TestInput *>(entry_args)->v2; }void bench_athena(benchmark::State &state) {athena::Athena athena;std::unique_ptr<jitfusion::FunctionRegistry> func_registry;jitfusion::FunctionRegistryFactory::CreateFunctionRegistry(&func_registry);jitfusion::FunctionSignature sign1("LoadV1", {jitfusion::ValueType::kPtr}, jitfusion::ValueType::kF64);func_registry->RegisterReadOnlyCFunc(sign1, reinterpret_cast<void *>(LoadV1));jitfusion::FunctionSignature sign2("LoadV2", {jitfusion::ValueType::kPtr}, jitfusion::ValueType::kF64);func_registry->RegisterReadOnlyCFunc(sign2, reinterpret_cast<void *>(LoadV2));std::string code = R"(v1 = LoadV1(entry_arg);v2 = LoadV2(entry_arg);r = if(v1 + v2 < 100000000, floor(log10(1 + v1 + v2)), 27.0);)";athena.Compile(code, func_registry);jitfusion::RetType ret;athena::ExecContext exec_ctx(4096);const int batch_size = state.range(0);for (auto _ : state) {for (int i = 0; i < batch_size; i++) {athena.Execute(exec_ctx, &inputs[i], &ret);}}// std::cout << std::get<double>(ret) << '\n';
}void PrintSimple(const std::vector<std::shared_ptr<arrow::Array>> &arrays) {// std::cout << arrays.size() << std::endl;for (const auto &i : arrays) {const auto &array = std::static_pointer_cast<arrow::DoubleArray>(i);for (int i = 0; i < array->length(); i++) {std::cout << "value " << i << "=" << array->raw_values()[i] << '\n';}}
}void bench_gandiva(benchmark::State &state) {std::string expr_str = "if(v1 + v2 < 100000000, floor(log10(1 + v1 + v2)), 27.0)";// prep gandivaauto field_v1_type = arrow::field("v1", arrow::float64());auto field_v2_type = arrow::field("v2", arrow::float64());auto v1 = gandiva::TreeExprBuilder::MakeField(field_v1_type);auto v2 = gandiva::TreeExprBuilder::MakeField(field_v2_type);auto v1_add_v2 = gandiva::TreeExprBuilder::MakeFunction("add", {v1, v2}, arrow::float64());auto literal_1 = gandiva::TreeExprBuilder::MakeLiteral(1.0);auto v1_add_v2_add_1 = gandiva::TreeExprBuilder::MakeFunction("add", {v1_add_v2, literal_1}, arrow::float64());auto log10_result = gandiva::TreeExprBuilder::MakeFunction("log10", {v1_add_v2_add_1}, arrow::float64());auto floor_result = gandiva::TreeExprBuilder::MakeFunction("floor", {log10_result}, arrow::float64());auto literal_100000000 = gandiva::TreeExprBuilder::MakeLiteral(100000000.0);auto literal_27 = gandiva::TreeExprBuilder::MakeLiteral(27.0);auto cmp = gandiva::TreeExprBuilder::MakeFunction("less_than", {v1_add_v2, literal_100000000}, arrow::boolean());auto conditional = gandiva::TreeExprBuilder::MakeIf(cmp, floor_result, literal_27, arrow::float64());// auto conditional = gandiva::TreeExprBuilder::MakeIf(cmp, v1_add_v2, literal_27, arrow::float64());auto field_result = arrow::field("result", arrow::float64());auto gandiva_expr = gandiva::TreeExprBuilder::MakeExpression(conditional, field_result);auto schema = arrow::schema({field_v1_type, field_v2_type});// std::cout << "expr: " << gandiva_expr->ToString() << '\n';// std::cout << "schema: " << schema->ToString() << std::endl;// std::cout << "schema metadata: " << schema->ToString(true) << std::endl;std::shared_ptr<gandiva::Projector> projector;auto status = gandiva::Projector::Make(schema, {gandiva_expr}, &projector);if (!status.ok()) {std::cout << status.ToString() << '\n';return;}const int batch_size = state.range(0);// std::cout << pool->backend_name() << std::endl;arrow::ArrayVector outputs;for (auto _ : state) {std::vector<std::shared_ptr<arrow::Array>> input_arr(2);const int batch_size = state.range(0);arrow::DoubleBuilder builder;auto ret = builder.Reserve(batch_size);std::vector<double> v1s;v1s.reserve(batch_size);for (int i = 0; i < batch_size; i++) {v1s.emplace_back(inputs[i].v1);}ret = builder.AppendValues(v1s);ret = builder.Finish(input_arr.data());builder.Reset();std::vector<double> v2s;v2s.reserve(batch_size);for (int i = 0; i < batch_size; i++) {v2s.emplace_back(inputs[i].v2);}ret = builder.AppendValues(v2s);ret = builder.Finish(&input_arr[1]);auto *pool = arrow::default_memory_pool();// std::cout << pool->backend_name() << std::endl;auto in_batch = arrow::RecordBatch::Make(schema, batch_size, input_arr);projector->Evaluate(*in_batch, pool, &outputs);}// PrintSimple(input_arr);// PrintSimple(outputs);// std::cout << "value =" << std::static_pointer_cast<arrow::DoubleArray>(outputs[0])->raw_values()[batch_size - 1]// << '\n';
}void bench_athena_optimize(benchmark::State &state) {athena::Athena athena;std::unique_ptr<jitfusion::FunctionRegistry> func_registry;jitfusion::FunctionRegistryFactory::CreateFunctionRegistry(&func_registry);jitfusion::FunctionSignature sign1("LoadV1", {jitfusion::ValueType::kPtr}, jitfusion::ValueType::kF64);jitfusion::FunctionStructure func_struct1 = {jitfusion::FunctionType::kLLVMIntrinicFunc, nullptr, CallLoadV1Function};func_registry->RegisterFunc(sign1, func_struct1);jitfusion::FunctionSignature sign2("LoadV2", {jitfusion::ValueType::kPtr}, jitfusion::ValueType::kF64);jitfusion::FunctionStructure func_struct2 = {jitfusion::FunctionType::kLLVMIntrinicFunc, nullptr, CallLoadV2Function};func_registry->RegisterFunc(sign2, func_struct2);std::string code = R"(v1 = LoadV1(entry_arg);v2 = LoadV2(entry_arg);r = if(v1 + v2 < 100000000, floor(log10(1 + v1 + v2)), 27.0);)";athena.Compile(code, func_registry);jitfusion::RetType ret;const int batch_size = state.range(0);for (auto _ : state) {for (int i = 0; i < batch_size; i++) {athena.Execute(&inputs[i], &ret);}}// std::cout << std::get<double>(ret) << '\n';
}BENCHMARK(bench_exprtk_expr)->RangeMultiplier(10)->Range(10, kBatchSize);
BENCHMARK(bench_athena)->RangeMultiplier(10)->Range(10, kBatchSize);
BENCHMARK(bench_gandiva)->RangeMultiplier(10)->Range(10, kBatchSize);} // namespaceBENCHMARK_MAIN();
可以看到,对这个式子来说,在10w级别的数据开始,gandiva 才有优势。不过 athena 实际上是支持 list 类型的计算的,我们再来对比下如果是用 athena 的 list 函数计算这个式子会怎样。
#include "benchmark/benchmark.h"
#include <chrono>
#include <cstddef>
#include <iostream>
#include <random>
#include "arrow/array/array_base.h"
#include "arrow/array/builder_base.h"
#include "arrow/record_batch.h"
#include "arrow/status.h"
#include "arrow/type_fwd.h"
#include "athena/athena.h"
#include "exec_engine.h"
#include "gandiva/expression.h"
#include "gandiva/gandiva_aliases.h"
#include "gandiva/parser.h"
#include "gandiva/projector.h"
#include "gandiva/tree_expr_builder.h"
#include "riemann/3rd/exprtk/exprtk.hpp"
#include "type.h"namespace {
std::mt19937_64 rng(std::chrono::steady_clock::now().time_since_epoch().count());
std::uniform_real_distribution<double> eng_f64(0, 1e8);struct TestInput {double v1;double v2;
};constexpr size_t kBatchSize = 100000;
std::vector<TestInput> GenInputs() {std::vector<TestInput> inputs;for (int i = 0; i < kBatchSize; ++i) {TestInput input{.v1 = eng_f64(rng), .v2 = eng_f64(rng)};// std::cout << "v1=" << input.v1 << " v2=" << input.v2 << '\n';inputs.emplace_back(input);}return inputs;
}std::vector<TestInput> inputs = GenInputs();struct TestInputVec {std::vector<double> v1;std::vector<double> v2;
};void bench_exprtk_expr(benchmark::State &state) {typedef exprtk::symbol_table<double> symbol_table_t;typedef exprtk::expression<double> expression_t;typedef exprtk::parser<double> parser_t;typedef exprtk::parser_error::type error_t;std::string expression_str = "if(v1 + v2 < 100000000, floor(log10(1 + v1 + v2)), 27.0)";symbol_table_t symbol_table;symbol_table.add_constants();double s1;double s2;symbol_table.add_variable("v1", s1);symbol_table.add_variable("v2", s2);expression_t expression;expression.register_symbol_table(symbol_table);parser_t parser;parser.compile(expression_str, expression);double ans;const int batch_size = state.range(0);for (auto _ : state) {for (int i = 0; i < batch_size; i++) {s1 = inputs[i].v1;s2 = inputs[i].v2;ans = expression.value();}}// std::cout << ans << '\n';
}double LoadV1(void *entry_args) { return reinterpret_cast<TestInput *>(entry_args)->v1; }double LoadV2(void *entry_args) { return reinterpret_cast<TestInput *>(entry_args)->v2; }void bench_athena(benchmark::State &state) {athena::Athena athena;std::unique_ptr<jitfusion::FunctionRegistry> func_registry;jitfusion::FunctionRegistryFactory::CreateFunctionRegistry(&func_registry);jitfusion::FunctionSignature sign1("LoadV1", {jitfusion::ValueType::kPtr}, jitfusion::ValueType::kF64);func_registry->RegisterReadOnlyCFunc(sign1, reinterpret_cast<void *>(LoadV1));jitfusion::FunctionSignature sign2("LoadV2", {jitfusion::ValueType::kPtr}, jitfusion::ValueType::kF64);func_registry->RegisterReadOnlyCFunc(sign2, reinterpret_cast<void *>(LoadV2));std::string code = R"(v1 = LoadV1(entry_arg);v2 = LoadV2(entry_arg);r = if(v1 + v2 < 100000000, floor(log10(1 + v1 + v2)), 27.0);)";athena.Compile(code, func_registry);jitfusion::RetType ret;athena::ExecContext exec_ctx(4096);const int batch_size = state.range(0);for (auto _ : state) {for (int i = 0; i < batch_size; i++) {athena.Execute(exec_ctx, &inputs[i], &ret);}}// std::cout << std::get<double>(ret) << '\n';
}void PrintSimple(const std::vector<std::shared_ptr<arrow::Array>> &arrays) {// std::cout << arrays.size() << std::endl;for (const auto &i : arrays) {const auto &array = std::static_pointer_cast<arrow::DoubleArray>(i);for (int i = 0; i < array->length(); i++) {std::cout << "value " << i << "=" << array->raw_values()[i] << '\n';}}
}void bench_gandiva(benchmark::State &state) {std::string expr_str = "if(v1 + v2 < 100000000, floor(log10(1 + v1 + v2)), 27.0)";// prep gandivaauto field_v1_type = arrow::field("v1", arrow::float64());auto field_v2_type = arrow::field("v2", arrow::float64());auto v1 = gandiva::TreeExprBuilder::MakeField(field_v1_type);auto v2 = gandiva::TreeExprBuilder::MakeField(field_v2_type);auto v1_add_v2 = gandiva::TreeExprBuilder::MakeFunction("add", {v1, v2}, arrow::float64());auto literal_1 = gandiva::TreeExprBuilder::MakeLiteral(1.0);auto v1_add_v2_add_1 = gandiva::TreeExprBuilder::MakeFunction("add", {v1_add_v2, literal_1}, arrow::float64());auto log10_result = gandiva::TreeExprBuilder::MakeFunction("log10", {v1_add_v2_add_1}, arrow::float64());auto floor_result = gandiva::TreeExprBuilder::MakeFunction("floor", {log10_result}, arrow::float64());auto literal_100000000 = gandiva::TreeExprBuilder::MakeLiteral(100000000.0);auto literal_27 = gandiva::TreeExprBuilder::MakeLiteral(27.0);auto cmp = gandiva::TreeExprBuilder::MakeFunction("less_than", {v1_add_v2, literal_100000000}, arrow::boolean());auto conditional = gandiva::TreeExprBuilder::MakeIf(cmp, floor_result, literal_27, arrow::float64());// auto conditional = gandiva::TreeExprBuilder::MakeIf(cmp, v1_add_v2, literal_27, arrow::float64());auto field_result = arrow::field("result", arrow::float64());auto gandiva_expr = gandiva::TreeExprBuilder::MakeExpression(conditional, field_result);auto schema = arrow::schema({field_v1_type, field_v2_type});// std::cout << "expr: " << gandiva_expr->ToString() << '\n';// std::cout << "schema: " << schema->ToString() << std::endl;// std::cout << "schema metadata: " << schema->ToString(true) << std::endl;std::shared_ptr<gandiva::Projector> projector;auto status = gandiva::Projector::Make(schema, {gandiva_expr}, &projector);if (!status.ok()) {std::cout << status.ToString() << '\n';return;}const int batch_size = state.range(0);// std::cout << pool->backend_name() << std::endl;arrow::ArrayVector outputs;for (auto _ : state) {std::vector<std::shared_ptr<arrow::Array>> input_arr(2);const int batch_size = state.range(0);arrow::DoubleBuilder builder;auto ret = builder.Reserve(batch_size);std::vector<double> v1s;v1s.reserve(batch_size);for (int i = 0; i < batch_size; i++) {v1s.emplace_back(inputs[i].v1);}ret = builder.AppendValues(v1s);ret = builder.Finish(input_arr.data());builder.Reset();std::vector<double> v2s;v2s.reserve(batch_size);for (int i = 0; i < batch_size; i++) {v2s.emplace_back(inputs[i].v2);}ret = builder.AppendValues(v2s);ret = builder.Finish(&input_arr[1]);auto *pool = arrow::default_memory_pool();// std::cout << pool->backend_name() << std::endl;auto in_batch = arrow::RecordBatch::Make(schema, batch_size, input_arr);projector->Evaluate(*in_batch, pool, &outputs);}// PrintSimple(input_arr);// PrintSimple(outputs);// std::cout << "value =" << std::static_pointer_cast<arrow::DoubleArray>(outputs[0])->raw_values()[batch_size - 1]// << '\n';
}jitfusion::F64ListStruct LoadV1List(void *entry_args, void *exec_ctx) {// 考虑到gandiva要组装一次数据,这里athena就复制一份数据测试比较公平。auto *inputs = reinterpret_cast<TestInputVec *>(entry_args);auto *ctx = reinterpret_cast<jitfusion::ExecContext *>(exec_ctx);jitfusion::F64ListStruct result;result.data = reinterpret_cast<double *>(ctx->arena.Allocate(sizeof(double) * inputs->v1.size()));for (size_t i = 0; i < inputs->v1.size(); i++) {result.data[i] = inputs->v1[i];}result.len = static_cast<uint32_t>(inputs->v1.size());return result;
}jitfusion::F64ListStruct LoadV2List(void *entry_args, void *exec_ctx) {auto *inputs = reinterpret_cast<TestInputVec *>(entry_args);auto *ctx = reinterpret_cast<jitfusion::ExecContext *>(exec_ctx);jitfusion::F64ListStruct result;result.data = reinterpret_cast<double *>(ctx->arena.Allocate(sizeof(double) * inputs->v2.size()));for (size_t i = 0; i < inputs->v2.size(); i++) {result.data[i] = inputs->v2[i];}result.len = static_cast<uint32_t>(inputs->v2.size());return result;
}void bench_athena_vectorization(benchmark::State &state) {athena::Athena athena;std::unique_ptr<jitfusion::FunctionRegistry> func_registry;jitfusion::FunctionRegistryFactory::CreateFunctionRegistry(&func_registry);jitfusion::FunctionSignature sign1("LoadV1", {jitfusion::ValueType::kPtr, jitfusion::ValueType::kPtr},jitfusion::ValueType::kF64List);func_registry->RegisterReadOnlyCFunc(sign1, reinterpret_cast<void *>(LoadV1List));jitfusion::FunctionSignature sign2("LoadV2", {jitfusion::ValueType::kPtr, jitfusion::ValueType::kPtr},jitfusion::ValueType::kF64List);func_registry->RegisterReadOnlyCFunc(sign2, reinterpret_cast<void *>(LoadV2List));std::string code = R"(v1 = LoadV1(entry_arg, exec_ctx);v2 = LoadV2(entry_arg, exec_ctx);v3 = ListAddWithMinSize(v1, v2, exec_ctx);condition = GenLessBitmap(v3, 100000000.0, exec_ctx);r = IfByBitmap(condition, ListFloor(ListLog10(ListAdd(v3, 1.0, exec_ctx), exec_ctx), exec_ctx), 27.0, exec_ctx);)";auto st = athena.Compile(code, func_registry);jitfusion::RetType ret;const int batch_size = state.range(0);TestInputVec input_vec;input_vec.v1.reserve(batch_size);input_vec.v2.reserve(batch_size);for (int i = 0; i < batch_size; i++) {input_vec.v1.emplace_back(inputs[i].v1);input_vec.v2.emplace_back(inputs[i].v2);}jitfusion::ExecContext exec_ctx(static_cast<int64_t>(batch_size * 10 * 8));for (auto _ : state) {athena.Execute(exec_ctx, &input_vec, &ret);}auto result = std::get<std::vector<double>>(ret);// std::cout << result[result.size() - 1] << '\n';
}BENCHMARK(bench_exprtk_expr)->RangeMultiplier(10)->Range(10, kBatchSize);
BENCHMARK(bench_athena)->RangeMultiplier(10)->Range(10, kBatchSize);
BENCHMARK(bench_gandiva)->RangeMultiplier(10)->Range(10, kBatchSize);
BENCHMARK(bench_athena_vectorization)->RangeMultiplier(10)->Range(10, kBatchSize);} // namespaceBENCHMARK_MAIN();
就这个式子而言,效率全方位比 gandiva 要快,并且是倍数级别提升。不过 athena 并非主打的是向量化计算,支持的数据类型并没有 gandiva 底层的 arrow 支持的类型要全,拿这个举例是为了说明 athena 在碰到 list 类型运算时的效率也非常高。
结语
athena 执行引擎精准定位小 batch、可预编译的高性能计算场景,通过创新的设计架构、强大的优化策略,在众多执行引擎中脱颖而出。目前库已开源:https://github.com/viktorika/jitfusion/tree/main/athena。