FPGA学习笔记——简单的IIC读写EEPROM
目录
一、任务
二、需求分析
三、Visio图
四、具体分析
五、代码
六、实现现象
一、任务
1、PC端通过串口发送数据至FPGA,然后将数据写进EEPROM,每写1次,地址加1。
2、按下按键进行一次随机读操作,随机读的地址从地址0开始,依次读;读出来的数据通过串口发送至PC端显示,显示内容为“读数据:xx”。
二、需求分析
首先,肯定需要串口的发送和接收模块,
然后,还需要EEPROM的读写控制模块,
最后,还需要按键消抖模块。
了解了IIC通信协议(FPGA学习笔记——IIC协议简介-CSDN博客),我们可以知道,在随机读和字节写的时候都要发送一个带起始信号的写(在随机读方向位也是“0”)和一个普通的写(Word Address)。其余的就是:带起始信号的读,普通的读,带停止信号的读和带停止信号的写。
当然,这是一种想法,另外一种想法就是分成:起始信号、写、读、停止信号,分别组合在一起,在rw_ctrl模块中传相应的命令去执行相应的读写操作(在代码中有体现)。cmd参数定义: cmd[0]:起始 信号,cmd[1]:写 ,cmd[2]:读 ,cmd[3]:停止信号。
我这里使用的IIC的时钟频率是200kHz(在100kHz~400kHz之间),这里不用写分频,直接MAX_CNT_SCL=50MHz/200kHz,MAX_CNT_SCL>>1直接分完低电平和高电平。
三、Visio图
Visio图
四、具体分析
首先,串口发送和接收模块(FPGA学习笔记——串口RS232回环实验_verilog 串口回环-CSDN博客)之前的文章里面已经讲过了,这里就不分析这个,
然后,EEPROM的读写控制模块可以分成rw_ctrl(读写控制模块)模块和iic_intf(IIC接口模块),这样可以将读和写控制分开写,这样写我觉得思路更清晰一点,更好的描述这个两个状态。
rw_ctrl模块:这个模块的状态分为
IDLE
WRITE
READ
DONE为什么分成这几个状态:
首先,在进行写操作的时候,不能进行读操作,所以将读写操作状态分开来,
写操作:当上位机发送1byte数据过来,就从IDLE进入WRITE状态,将命令发给iic_intf模块和1byte写入EEPROM里面,
写完到DONE状态,
最后到IDLE状态,等待下一次触发。
读操作:当按键按下,就从IDLE进入READ状态,从EEPROM里面读出1byte数据,发给上位机显示
发完到DONE状态,
最后到IDLE状态,等待下一次触发。
iic_intf模块:这个模块的状态分为
IDLE
START
WR_DATA
RD_DATA
R_ACK
S_ACK
STOP为什么分成这几个状态:
首先,根据rw_ctrl模块传过来的cmd对相应的位进行判断,先判断cmd[0],如果cmd[0]==1,则跳到START状态,如果cmd[0]==0,则判断cmd[1]和cmd[2],哪个为1,则跳到相应的状态,在等待字节写完或读完,再判断cmd[3],是否跳到STOP状态。
以上就是每个模块的思路。(有可能说的不是很清楚,可以看看代码,应该就能理解了)
五、代码
sys_top.v
module sys_top( input sys_clk ,input sys_rst_n,input uart_rxd ,output uart_txd ,input key_in ,output iic_scl ,inout iic_sda ,output rtc_nrst
);wire [7:0] rx_data ;
wire rx_data_vld;
wire ready ;
wire [7:0] tx_data ;
wire tx_data_vld;
wire key_down ;
wire sda_in ;
wire sda_out ;
wire sda_out_en ;assign iic_sda = sda_out_en ? sda_out : 1'bz;
assign sda_in = iic_sda;assign rtc_nrst = 1'b0;uart_rx #( .CLOCK_FRQ(50_000_000),.BAUD(115200),.DATA_LENTH(8) ,.CHECKBIT_SELECT(0),.CHECK_TYPE(0) //偶校验:0 奇校验:1
)uart_rx_inst(
. clk (sys_clk ),
. rst_n (sys_rst_n ),
. uart_rxd (uart_rxd ),
. dout (rx_data ),
. dout_vld (rx_data_vld)
);eeprom_ctrl u_eeprom_ctrl(.clk (sys_clk ),.rst_n (sys_rst_n ),.rx_data (rx_data ),.rx_data_vld (rx_data_vld ),.ready (ready ),.tx_data (tx_data ),.tx_data_vld (tx_data_vld ),.key_down (key_down ),.scl (iic_scl ),.sda_in (sda_in ),.sda_out (sda_out ),.sda_out_en (sda_out_en )
);key_filter u_key_filter(.clk (sys_clk ),.rst_n (sys_rst_n),.key_in (key_in ),.key_down (key_down )
);uart_tx #( .CLOCK_FRQ(50_000_000),.BAUD(115200),.DATA_LENTH(8) ,.CHECKBIT_SELECT(0),.CHECK_TYPE(0) //偶校验:0 奇校验:1)uart_tx_inst(
. clk (sys_clk ),
. rst_n (sys_rst_n ),
. tx_din (tx_data ),
. tx_enable(tx_data_vld),
. uart_txd (uart_txd ),
. ready (ready ) //忙闲指示信号
);endmodule
uart_tx
module uart_tx #(parameter CLOCK_FRQ = 50_000_000,BAUD = 9600 ,DATA_LENTH = 8 ,CHECKBIT_SELECT = 0 ,CHECK_TYPE = 0 //偶校验:0 奇校验:1
)( input clk ,input rst_n ,input [DATA_LENTH-1:0] tx_din ,input tx_enable,output reg uart_txd ,output reg ready //忙闲指示信号
);
//---------<参数定义>------------------------------------------------//状态机参数定义localparam IDLE = 5'b00001,START = 5'b00010,DATA = 5'b00100,CHECK = 5'b01000,STOP = 5'b10000;localparam BUAD_MAX = CLOCK_FRQ/BAUD;//---------<内部信号定义>--------------------------------------------reg [4:0] state_c ;reg [4:0] state_n ;reg [15:0] cnt_baud ;//波特率计数器wire add_cnt_baud;wire end_cnt_baud;reg [2:0] cnt_bit ;//数据传输的比特计数器wire add_cnt_bit ;wire end_cnt_bit ;reg [7:0] tx_din_r ;//状态转移条件定义wire idle2start ;wire start2data ;wire data2check ;wire data2stop ;wire check2stop ;wire stop2idle ;//*******************************************************************
//--tx_din_r
//*******************************************************************always @(posedge clk or negedge rst_n)begin if(!rst_n)begintx_din_r <= 'd0;end else if(tx_enable)begin tx_din_r <= tx_din;end end//*******************************************************************
//--状态机
//*******************************************************************//第一段:同步时序描述状态转移always @(posedge clk or negedge rst_n)begin if(!rst_n)beginstate_c <= IDLE;end else begin state_c <= state_n;end end//第二段:组合逻辑判断状态转移条件,描述状态转移规律always @(*) begincase(state_c)IDLE : beginif(idle2start)state_n = START; else state_n = state_c;endSTART : beginif(start2data)state_n = DATA;else state_n = state_c;endDATA : beginif(data2check)state_n = CHECK;else if(data2stop)state_n = STOP;else state_n = state_c;endCHECK : beginif(check2stop)state_n = STOP;else state_n = state_c;endSTOP : beginif(stop2idle)state_n = IDLE; else state_n = state_c;enddefault : state_n = IDLE;endcaseendassign idle2start = (state_c == IDLE ) && tx_enable; assign start2data = (state_c == START) && end_cnt_baud;assign data2check = (state_c == DATA ) && end_cnt_bit && CHECKBIT_SELECT;assign data2stop = (state_c == DATA ) && end_cnt_bit && !CHECKBIT_SELECT;assign check2stop = (state_c == CHECK) && end_cnt_baud;assign stop2idle = (state_c == STOP ) && end_cnt_baud;//*******************************************************************
//--cnt_baud
//*******************************************************************always @(posedge clk or negedge rst_n)begin if(!rst_n)begincnt_baud <= 'd0;end else if(add_cnt_baud)begin if(end_cnt_baud)begin cnt_baud <= 'd0;endelse begin cnt_baud <= cnt_baud + 1'b1;end endend assign add_cnt_baud = state_c != IDLE;assign end_cnt_baud = add_cnt_baud && cnt_baud == ((state_c == STOP) ? ((BUAD_MAX>>1)+(BUAD_MAX>>2)) : (BUAD_MAX - 1));//*******************************************************************
//--cnt_bit
//*******************************************************************always @(posedge clk or negedge rst_n)begin if(!rst_n)begincnt_bit <= 'd0;end else if(add_cnt_bit)begin if(end_cnt_bit)begin cnt_bit <= 'd0;endelse begin cnt_bit <= cnt_bit + 1'b1;end endend assign add_cnt_bit = state_c == DATA && end_cnt_baud;assign end_cnt_bit = add_cnt_bit && cnt_bit == DATA_LENTH - 1;//*******************************************************************
//--uart_txd
//*******************************************************************always @(posedge clk or negedge rst_n)begin if(!rst_n)beginuart_txd <= 1'b1;end else begin case (state_c)IDLE : uart_txd <= 1'b1;START : uart_txd <= 1'b0;DATA : uart_txd <= tx_din_r[cnt_bit];//并转串,LSB// CHECK : uart_txd <= ^tx_din_r + CHECK_TYPE;CHECK : uart_txd <= CHECK_TYPE ? (^tx_din_r + 1'b1) : (^tx_din_r); STOP : uart_txd <= 1'b1;default: uart_txd <= 1'b1;endcaseend end//*******************************************************************
//--ready
//*******************************************************************always @(posedge clk or negedge rst_n)begin if(!rst_n)beginready <= 'd0;end else begin ready <= state_n == IDLE;end endendmodule
uart_rx
module uart_rx #(parameter CLOCK_FRQ = 50_000_000,BAUD = 9600 ,DATA_LENTH = 8 ,CHECKBIT_SELECT = 0 ,CHECK_TYPE = 0 //偶校验:0 奇校验:1
)( input clk ,input rst_n ,input uart_rxd ,output reg [7:0] dout ,output dout_vld
);
//---------<参数定义>------------------------------------------------//状态机参数定义localparam IDLE = 5'b00001,START = 5'b00010,DATA = 5'b00100,CHECK = 5'b01000,STOP = 5'b10000;localparam BUAD_MAX = CLOCK_FRQ/BAUD;//---------<内部信号定义>--------------------------------------------reg [4:0] state_c ;reg [4:0] state_n ;reg [15:0] cnt_baud ;//波特率计数器wire add_cnt_baud;wire end_cnt_baud;reg [2:0] cnt_bit ;//接收bit数量的计数器wire add_cnt_bit;wire end_cnt_bit;reg [2:0] uart_rxd_r ;wire rxd_n_edge ;//状态转移条件定义wire idle2start ;wire start2data ;wire data2check ;wire data2stop ;wire check2stop ;wire stop2idle ;//*******************************************************************
//--打三拍(前两拍同步,后一拍获得边沿)
//*******************************************************************//uart_rxd_ralways @(posedge clk or negedge rst_n)begin if(!rst_n)beginuart_rxd_r <= 3'b111;end else begin uart_rxd_r <= {uart_rxd_r[1:0],uart_rxd};end end//rxd_n_edgeassign rxd_n_edge = ~uart_rxd_r[1] & uart_rxd_r[2];//*******************************************************************
//--状态机
//*******************************************************************//第一段:同步时序描述状态转移always @(posedge clk or negedge rst_n)begin if(!rst_n)beginstate_c <= IDLE;end else begin state_c <= state_n;end end//第二段:组合逻辑判断状态转移条件,描述状态转移规律always @(*) begincase(state_c)IDLE : beginif(idle2start)state_n = START; else state_n = state_c;endSTART : beginif(start2data)state_n = DATA;else state_n = state_c;endDATA : beginif(data2check)state_n = CHECK;else if(data2stop)state_n = STOP;else state_n = state_c;endCHECK : beginif(check2stop)state_n = STOP;else state_n = state_c;endSTOP : beginif(stop2idle)state_n = IDLE; else state_n = state_c;enddefault : state_n = IDLE;endcaseendassign idle2start = (state_c == IDLE ) && rxd_n_edge;assign start2data = (state_c == START) && end_cnt_baud;assign data2check = (state_c == DATA ) && end_cnt_bit && CHECKBIT_SELECT;assign data2stop = (state_c == DATA ) && end_cnt_bit && !CHECKBIT_SELECT;assign check2stop = (state_c == CHECK) && end_cnt_baud;assign stop2idle = (state_c == STOP ) && end_cnt_baud;//*******************************************************************
//--cnt_baud
//*******************************************************************always @(posedge clk or negedge rst_n)begin if(!rst_n)begincnt_baud <= 'd0;end else if(add_cnt_baud)begin if(end_cnt_baud)begin cnt_baud <= 'd0;endelse begin cnt_baud <= cnt_baud + 1'b1;end endend assign add_cnt_baud = state_c != IDLE;assign end_cnt_baud = add_cnt_baud && cnt_baud == ((state_c == STOP) ? ((BUAD_MAX>>1)+(BUAD_MAX>>2)) : (BUAD_MAX - 1));//*******************************************************************
//--cnt_bit
//*******************************************************************always @(posedge clk or negedge rst_n)begin if(!rst_n)begincnt_bit <= 'd0;end else if(add_cnt_bit)begin if(end_cnt_bit)begin cnt_bit <= 'd0;endelse begin cnt_bit <= cnt_bit + 1'b1;end endend assign add_cnt_bit = state_c == DATA && end_cnt_baud;assign end_cnt_bit = add_cnt_bit && cnt_bit == DATA_LENTH - 1;//*******************************************************************
//--dout
//*******************************************************************always @(posedge clk or negedge rst_n)begin if(!rst_n)begindout <= 'd0;end else if(state_c == DATA && cnt_baud == (BUAD_MAX>>1) - 1)begin dout[cnt_bit] <= uart_rxd_r[2];// dout <= {uart_rxd_r[2],dout[7:1]};end end//*******************************************************************
//--dout_vld
//*******************************************************************assign dout_vld = stop2idle;endmodule
param.v
//IIC命令参数定义
`define CMD_START 4'b0001
`define CMD_WRITE 4'b0010
`define CMD_READ 4'b0100
`define CMD_STOP 4'b1000`define WR_ID 8'ha0
`define RD_ID 8'ha1
eeprom.v
module eeprom_ctrl( input clk ,input rst_n ,//uart_rxinput [7:0] rx_data ,input rx_data_vld,//uart_txinput ready ,output [7:0] tx_data ,output tx_data_vld,//key_filterinput key_down ,//iic slaveoutput scl ,input sda_in ,output sda_out ,output sda_out_en
);wire start_en ;
wire [3:0] cmd ;
wire [7:0] wr_data ;
wire [7:0] rd_data ;
wire trans_done;rw_ctrl u_rw_ctrl(
.clk (clk ),
.rst_n (rst_n ),.rx_data (rx_data ),
.rx_data_vld(rx_data_vld),.ready (ready ),
.tx_data (tx_data ),
.tx_data_vld(tx_data_vld),.key_down (key_down ),.start_en (start_en ),
.cmd (cmd ),
.wr_data (wr_data ),
.rd_data (rd_data ),
.trans_done (trans_done )
);iic_intf u_iic_intf(
.clk (clk ),
.rst_n (rst_n ),.start_en (start_en ),//读/写使能信号
.cmd (cmd ),//命令信号 cmd[0]:起始 cmd[1]:写 cmd[2]:读 cmd[3]:停止信号
.wr_data (wr_data ),//写入的数据(ID、地址、数据)
.rd_data (rd_data ),//读出的数据
.trans_done(trans_done ),//一帧(字节)数据传输完成
.slave_ack (),//从机应答信号.scl (scl ),
.sda_in (sda_in ),
.sda_out (sda_out ),
.sda_out_en(sda_out_en)
);endmodule
rw_ctrl.v
`include "./param.v"module rw_ctrl#(parameter WR_LENTH = 3,RD_LENTH = 4)( input clk ,input rst_n ,//uart_rxinput [7:0] rx_data ,input rx_data_vld,//uart_txinput ready ,output reg [7:0] tx_data ,output tx_data_vld,//key_filterinput key_down ,//iic_intfoutput reg start_en ,output reg [3:0] cmd ,output reg [7:0] wr_data ,input [7:0] rd_data ,input trans_done
);localparam IDLE = 4'h1,WRITE = 4'h2,READ = 4'h4,DONE = 4'h8;reg [3:0] state_c ;
reg [3:0] state_n ;
reg [7:0] cnt_byte ;//读/写操作传输字节数量计数器
wire add_cnt_byte;
wire end_cnt_byte;
reg [7:0] wr_addr ;
reg [7:0] rd_addr ;
reg tx_flag ;
reg [3:0] cnt_tx ;
wire add_cnt_tx ;
wire end_cnt_tx ;wire idle2write;
wire idle2read ;
wire write2done;
wire read2done ;//---------<State Machine>-------------------------------------------------
always @(posedge clk or negedge rst_n)begin if(!rst_n)beginstate_c <= IDLE;end else begin state_c <= state_n;end
endalways @(*) begincase(state_c)IDLE : state_n = idle2write ? WRITE : (idle2read ? READ : IDLE);WRITE : state_n = write2done ? DONE : WRITE;READ : state_n = read2done ? DONE : READ;DONE : state_n = IDLE;default : state_n = IDLE;endcase
endassign idle2write = (state_c == IDLE) && rx_data_vld;
assign idle2read = (state_c == IDLE) && key_down;
assign write2done = (state_c == WRITE) && end_cnt_byte;
assign read2done = (state_c == READ) && end_cnt_byte;//---------<cnt_byte>-------------------------------------------------
always @(posedge clk or negedge rst_n)begin if(!rst_n)begincnt_byte <= 'd0;end else if(add_cnt_byte)begin if(end_cnt_byte)begin cnt_byte <= 'd0;endelse begin cnt_byte <= cnt_byte + 1'b1;end end
end assign add_cnt_byte = trans_done && (state_c == WRITE || state_c == READ);
assign end_cnt_byte = add_cnt_byte && cnt_byte == ((state_c == WRITE) ? (WR_LENTH-1) : (RD_LENTH-1));//优先级//---------<wr_addr>-------------------------------------------------
always @(posedge clk or negedge rst_n)begin if(!rst_n)beginwr_addr <= 'd0;end else if(write2done)begin wr_addr <= wr_addr + 1'b1;end
end//---------<rd_addr>-------------------------------------------------
always @(posedge clk or negedge rst_n)begin if(!rst_n)beginrd_addr <= 'd0;end else if(read2done)begin rd_addr <= rd_addr + 1'b1;end
end//---------<start_en cmd wr_data>-------------------------------------------------
always @(*)begin if(state_c == WRITE)begin case (cnt_byte)0 : begin start_en <= 1'b1;cmd <= `CMD_START | `CMD_WRITE;wr_data <= `WR_ID; end1 : begin start_en <= 1'b1;cmd <= `CMD_WRITE ;wr_data <= wr_addr; end2 : begin start_en <= 1'b1;cmd <= `CMD_STOP | `CMD_WRITE;wr_data <= rx_data; enddefault: begin start_en <= 1'b0;cmd <= 4'd0;wr_data <= 8'd0; endendcaseend else if(state_c == READ)begincase (cnt_byte)0 : begin start_en <= 1'b1;cmd <= `CMD_START | `CMD_WRITE;wr_data <= `WR_ID; end1 : begin start_en <= 1'b1;cmd <= `CMD_WRITE ;wr_data <= rd_addr; end2 : begin start_en <= 1'b1;cmd <= `CMD_START | `CMD_WRITE;wr_data <= `RD_ID; end3 : begin start_en <= 1'b1;cmd <= `CMD_STOP | `CMD_READ ;wr_data <= 8'h00; enddefault: begin start_en <= 1'b0;cmd <= 4'd0;wr_data <= 8'd0; endendcaseendelse begin start_en <= 1'b0;cmd <= 4'd0;wr_data <= 8'd0;end
end//---------<串口显示>-------------------------------------------------
//读数据:xx-->B6 C1 CA FD BE DD A3 BA x x//tx_flag
always @(posedge clk or negedge rst_n)begin if(!rst_n)begintx_flag <= 'd0;end else if(read2done)begin tx_flag <= 1'b1;end else if(end_cnt_tx)begin tx_flag <= 1'b0; end
end//cnt_tx
always @(posedge clk or negedge rst_n)begin if(!rst_n)begincnt_tx <= 'd0;end else if(add_cnt_tx)begin if(end_cnt_tx)begin cnt_tx <= 'd0;endelse begin cnt_tx <= cnt_tx + 1'b1;end end
end assign add_cnt_tx = tx_flag && ready;
assign end_cnt_tx = add_cnt_tx && cnt_tx == 10 - 1;//tx_data
always @(*)begin case (cnt_tx)0 : tx_data = 8'hB6;1 : tx_data = 8'hC1;2 : tx_data = 8'hCA;3 : tx_data = 8'hFD;4 : tx_data = 8'hBE; 5 : tx_data = 8'hDD;6 : tx_data = 8'hA3;7 : tx_data = 8'hBA;8 : tx_data = (rd_data[7:4]<8'd10) ? (rd_data[7:4] + "0") : (rd_data[7:4] + "A" - 8'd10);9 : tx_data = (rd_data[3:0]<8'd10) ? (rd_data[3:0] + "0") : (rd_data[3:0] + "A" - 8'd10);default: tx_data = 0;endcase
end//tx_data_vld
assign tx_data_vld = tx_flag && ready;endmodule
iic_intf.v
module iic_intf #(parameter SYS_CLOCK = 50_000_000,//系统时钟频率IIC_CLOCK = 200_000 //IIC传输速率
)( input clk ,input rst_n ,//rw_ctrlinput start_en ,//读/写使能信号input [3:0] cmd ,//命令信号 cmd[0]:起始 cmd[1]:写 cmd[2]:读 cmd[3]:停止信号input [7:0] wr_data ,//写入的数据(ID、地址、数据)output reg [7:0] rd_data ,//读出的数据output trans_done,//一帧(字节)数据传输完成// output reg slave_ack ,//从机应答信号//iic slaveoutput reg scl ,input sda_in ,output reg sda_out ,output reg sda_out_en
);localparam IDLE = 7'b000_0001,START = 7'b000_0010,WR_DATA = 7'b000_0100,RD_DATA = 7'b000_1000,R_ACK = 7'b001_0000,S_ACK = 7'b010_0000,STOP = 7'b100_0000;localparam CMD_START = 4'b0001,CMD_WRITE = 4'b0010,CMD_READ = 4'b0100,CMD_STOP = 4'b1000;localparam MAX_CNT_SCL = SYS_CLOCK/IIC_CLOCK,CHANGE_TIME = (MAX_CNT_SCL>>2) ,//四分之一串行时钟周期SAMPLE_TIME = (MAX_CNT_SCL>>1) + (MAX_CNT_SCL>>2);//四分之三串行时钟周期reg [6:0] state_c;
reg [6:0] state_n;
reg [9:0] cnt_scl ;//串行时钟计数器
wire add_cnt_scl;
wire end_cnt_scl;
reg [2:0] cnt_bit ;//读写数据比特计数器
wire add_cnt_bit;
wire end_cnt_bit;wire idle2start ;
wire idle2wr_data ;
wire idle2rd_data ;
wire start2wr_data;
wire start2rd_data;
wire wr_data2r_ack;
wire r_ack2idle ;
wire r_ack2stop ;
wire rd_data2s_ack;
wire s_ack2idle ;
wire s_ack2stop ;
wire stop2idle ;//---------<State Machine>-------------------------------------------------
always @(posedge clk or negedge rst_n)begin if(!rst_n)beginstate_c <= IDLE;end else begin state_c <= state_n;end
endalways @(*) begincase(state_c)IDLE : beginif(idle2start) //带起始信号的传输优先级高于其它传输state_n = START;else if(idle2wr_data)state_n = WR_DATA;else if(idle2rd_data)state_n = RD_DATA;else state_n = state_c;endSTART : beginif(start2wr_data)state_n = WR_DATA;else if(start2rd_data)state_n = RD_DATA;else state_n = state_c;endWR_DATA : beginif(wr_data2r_ack)state_n = R_ACK;else state_n = state_c;endRD_DATA : beginif(rd_data2s_ack)state_n = S_ACK;else state_n = state_c;endR_ACK : beginif(r_ack2idle)state_n = IDLE;else if(r_ack2stop)state_n = STOP;else state_n = state_c;endS_ACK : beginif(s_ack2idle)state_n = IDLE;else if(s_ack2stop)state_n = STOP;else state_n = state_c;endSTOP : beginif(stop2idle)state_n = IDLE;else state_n = state_c;enddefault : state_n = IDLE;endcase
endassign idle2start = (state_c == IDLE) && start_en && cmd[0];//(cmd & CMD_START)
assign idle2wr_data = (state_c == IDLE) && start_en && cmd[1];
assign idle2rd_data = (state_c == IDLE) && start_en && cmd[2];
assign start2wr_data = (state_c == START) && end_cnt_scl && cmd[1];
assign start2rd_data = (state_c == START) && end_cnt_scl && cmd[2];
assign wr_data2r_ack = (state_c == WR_DATA) && end_cnt_bit;
assign r_ack2idle = (state_c == R_ACK) && end_cnt_scl && cmd[3] == 1'b0;
assign r_ack2stop = (state_c == R_ACK) && end_cnt_scl && cmd[3] == 1'b1;
assign rd_data2s_ack = (state_c == RD_DATA) && end_cnt_bit;
assign s_ack2idle = (state_c == S_ACK) && end_cnt_scl && cmd[3] == 1'b0;
assign s_ack2stop = (state_c == S_ACK) && end_cnt_scl && cmd[3] == 1'b1;
assign stop2idle = (state_c == STOP) && end_cnt_scl;//---------<cnt_scl>-------------------------------------------------
always @(posedge clk or negedge rst_n)begin if(!rst_n)begincnt_scl <= 'd0;end else if(add_cnt_scl)begin if(end_cnt_scl)begin cnt_scl <= 'd0;endelse begin cnt_scl <= cnt_scl + 1'b1;end end
end assign add_cnt_scl = state_c != IDLE;
assign end_cnt_scl = add_cnt_scl && cnt_scl == MAX_CNT_SCL - 1;//---------<cnt_bit>-------------------------------------------------
always @(posedge clk or negedge rst_n)begin if(!rst_n)begincnt_bit <= 'd0;end else if(add_cnt_bit)begin if(end_cnt_bit)begin cnt_bit <= 'd0;endelse begin cnt_bit <= cnt_bit + 1'b1;end end
end assign add_cnt_bit = (state_c == WR_DATA || state_c == RD_DATA) && end_cnt_scl;
assign end_cnt_bit = add_cnt_bit && cnt_bit == 8 - 1;//---------<scl>-------------------------------------------------
always @(posedge clk or negedge rst_n)begin if(!rst_n)beginscl <= 1'b1;end else if(state_c != IDLE)begin if(cnt_scl < (MAX_CNT_SCL>>1))scl <= 1'b0;else scl <= 1'b1;end else begin scl <= 1'b1;end
end//---------<sda_out sda_out_en rd_data>------------------------------------
always @(posedge clk or negedge rst_n)begin if(!rst_n)beginsda_out <= 1'b1;sda_out_en <= 1'b0;rd_data <= 8'd0;// slave_ack <= 1'b0;end else begin case (state_c)IDLE : beginsda_out <= 1'b1;sda_out_en <= 1'b0;endSTART : beginsda_out_en <= 1'b1;if(cnt_scl < SAMPLE_TIME)sda_out <= 1'b1;else sda_out <= 1'b0;endWR_DATA : beginsda_out_en <= 1'b1;if(cnt_scl == CHANGE_TIME - 1) //并转串 MSBsda_out <= wr_data[7-cnt_bit];else sda_out <= sda_out;endRD_DATA : beginsda_out <= 1'b0;sda_out_en <= 1'b0;if(cnt_scl == SAMPLE_TIME - 1)rd_data[7-cnt_bit] <= sda_in;else rd_data <= rd_data;endR_ACK : beginsda_out <= 1'b0;sda_out_en <= 1'b0;// // slave_ack <= (cnt_scl == SAMPLE_TIME - 1) ? sda_in : slave_ack;// if(cnt_scl == SAMPLE_TIME - 1)// slave_ack <= sda_in;// else // slave_ack <= slave_ack;endS_ACK : beginsda_out_en <= 1'b1;// sda_out <= (cnt_scl == CHANGE_TIME && cmd[3]) ? 1'b1 : 1'b0;if(cnt_scl == CHANGE_TIME)sda_out <= cmd[3] ? 1'b1 : 1'b0;else sda_out <= sda_out;endSTOP : beginsda_out_en <= 1'b1;if(cnt_scl == CHANGE_TIME)sda_out <= 1'b0;else if(cnt_scl == SAMPLE_TIME)sda_out <= 1'b1;end default: beginsda_out_en <= 1'b0;sda_out <= 1'b0;rd_data <= rd_data;endendcaseend
end//---------<trans_done>-------------------------------------------------
assign trans_done = r_ack2idle | s_ack2idle | stop2idle;endmodule
六、实现现象
以下是发送一个字节,并读取的出来的现象。
以上就是简单的IIC读写EEPROM实现。(如果有错误,还请大家指出来,谢谢!有什么不懂的都可以在评论区问,看到就会回复。)