PyCharm与前沿技术集成指南:AI开发、云原生与大数据实战
1. AI与机器学习开发环境配置
1.1 深度学习环境搭建
PyCharm专业版提供对主流AI框架的深度支持:
# 创建conda环境并安装PyTorch
# 在PyCharm终端执行:
conda create -n pytorch_env python=3.9
conda activate pytorch_env
conda install pytorch torchvision torchaudio -c pytorch# 验证安装
import torch
print(f"PyTorch版本: {torch.__version__}")
print(f"CUDA可用: {torch.cuda.is_available()}")
print(f"设备数量: {torch.cuda.device_count()}")
1.2 Jupyter Notebook深度集成
配置远程Jupyter内核:
// .idea/jupyterSettings.json
{"kernelSpecs": [{"name": "pytorch_kernel","display_name": "PyTorch (Python 3.9)","path": "/opt/conda/envs/pytorch_env/bin/python","interrupt_mode": "signal"}],"defaultKernel": "pytorch