C++ AI流处理核心算法实战
C++中与AI流处理
以下是C++中与AI流处理(Stream Processing)相关的核心算法示例,涵盖数据流处理、实时分析及机器学习等场景,代码简洁可直接集成:
滑动窗口均值计算(实时数据平滑)
#include <queue>
std::queue<double> data_stream;
const int window_size = 5;void sliding_window_mean(double new_value) {if (data_stream.size() >= window_size) data_stream.pop();data_stream.push(new_value);double sum = 0;std::queue<double> temp = data_stream;while (!temp.empty()) {sum += temp.front();temp.pop();}double mean = sum / data_stream.size();// Use mean for further processing
}
指数加权移动平均(EWMA)
double ewma(double previous_avg, double new_value, double alpha = 0.3) {return alpha * new_value + (1 - alpha) * previous_avg;
}
流数据中位数(双堆法)
#include <queue>
std::priority_queue<double> max_heap;
std::priority_queue<double, std::vector<double>, std::greater<double>> min_heap;void add_number(double num) {if (max_heap.empty() || num <= max_heap.top()) max_heap.push(num);else min_heap.push(num);if (max_heap.size() > min_heap.size() + 1) {min_heap.push(max_heap.top());max_heap.pop();} else if (min_heap.size() > max_heap.size()) {max_heap.push(min_heap.top());min_heap.pop();}
}double get_median() {return max_heap.size() == min_heap.size() ? (max_heap.top() + min_heap.top()) / 2.0 : max_heap.top();
}
布隆过滤器(流数据去重)
#include <bitset>
#include <functional>
const int filter_size = 1000;
std::bitset<filter_size> bloom_filter;void add_to_filter(const std::string& item) {size_t hash1 = std::hash<std::string>{}(item) % filter_size;size_t hash2 = std::hash<std::string>{}(item + "salt") % filter_size;bloom_filter.set(hash1);bloom_filter.set(hash2);
}bool possibly_exists(const std::string& item) {size_t hash1 = std::hash<std::string>{}(item) % filter_size;size_t hash2 = std::hash<std::string>{}(item + "salt") % filter_size;return bloom_filter.test(hash1) && bloom_filter.test(hash2);
}
流式K-Means聚类(简版)
#include <vector>
#include <cmath>
std::vector<std::pair<double, double>> centroids = {{0,0}, {1,1}}; // Initial centersvoid update_centroids(double x, double y) {int nearest = 0;double min_dist = INFINITY;for (int i = 0; i < centroids.size(); ++i) {double dist = pow(x - centroids[i].first, 2) + pow(y - centroids[i].second, 2);if (dist < min_dist) {min_dist = dist;nearest = i;}}// Online update: adjust centroid towards the new pointcentroids[nearest].first = 0.9 * centroids[nearest].first + 0.1 * x;centroids[nearest].second = 0.9 * centroids[nearest].second + 0.1 * y;
}
流式梯度下降(线性回归)
double weight = 0, bias = 0;
const double learning_rate = 0.01;void online_gradient_descent(double x, double y_true) {double y_pred = weight * x + bias;double error = y_pred - y_true;weight -= learning_rate * error * x;bias -= learning_rate * error;
}
流数据分位数(T-Digest算法)
#include <tdigest/tdigest.h>
tdigest::TDigest digest;void process_stream_value(double value) {digest.add(value);
}double get_quantile(double q) {return digest.quantile(q);
}
流式PCA(增量主成分分析)
Eigen::MatrixXd covariance = Eigen::MatrixXd::Zero(2, 2);
int n_samples = 0;void update_pca(double x, double y) {Eigen::Vector2d point(x, y);covariance = (n_samples * covariance + point * point.transpose()) / (n_samples + 1);n_samples++;// Eigenvalue decomposition can be performed periodically
}
流式贝叶斯更新
double prior_mean = 0, prior_variance = 1;void bayesian_update(double new_sample, double sample_variance) {double posterior_precision = 1/prior_variance + 1/sample_variance;double posterior_mean = (prior_mean/prior_variance + new_sample/sample_variance) / posterior_precision;prior_mean = posterior_mean;prior_variance = 1 / posterior_precision;
}
流式随机森林(决策树更新)
#include <opencv2/ml.hpp>
cv::Ptr<cv::ml::RTrees> model = cv::ml::RTrees::create();void update_model(const cv::Mat& sample, int label) {cv::Mat samples_mat(1, sample.cols, CV_32F, sample.data);cv::Mat labels_mat(1, 1, CV_32S, &label);model->train(samples_mat, cv::ml::ROW_SAMPLE, labels_mat);
}
流式FFT(实时频谱分析)
#include <fftw3.h>
const int N = 1024;
fftw_complex in[N], out[N];
fftw_plan plan = fftw_plan_dft_1d(N, in, out, FFTW_FORWARD, FFTW_ESTIMATE);void process_audio_buffer(double* audio_samples) {for (int i = 0; i < N; ++i) {in[i][0] = audio_samples[i];in[i][1] = 0;}fftw_execute(plan);// out now contains frequency domain data
}
流式卡尔曼滤波
double x = 0, P = 1, Q = 0.01, R = 0.1; // State, Covariance, Process noise, Measurement noisevoid kalman_update(double z) {double K = P / (P + R); // Kalman gainx += K * (z - x); // Update estimateP *= (1 - K); // Update covariance
}
流式Apriori(频繁项集挖掘)
#include <unordered_map>
std::unordered_map<int, int> item_counts;
const int min_support = 10;void process_transaction(const std::vector<int>& items) {for (int item : items) {item_counts[item]++;}// Periodically prune items below min_support
}
流式Word2Vec(词向量更新)
#include <vector>
#include <unordered_map>
std::unordered_map<std::string, std::vector<float>> word_vectors;void update_word_vector(const std::string& word, const std::vector<float>& context_vec, float lr = 0.01) {for (int i = 0; i < word_vectors[word].size(); ++i) {word_vectors[word][i] -= lr * (word_vectors[word][i] - context_vec[i]);}
}
流式LSTM(时间序列预测)
#include <Eigen/Dense>
Eigen::MatrixXf Wf, Wi, Wo, Wc, Uf, Ui, Uo, Uc, bf, bi, bo, bc; // LSTM weights
Eigen::VectorXf h_prev, c_prev; // Hidden and cell statesvoid lstm_step(const Eigen::VectorXf& x) {Eigen::VectorXf f = (Wf * x + Uf * h_prev + bf).sigmoid();Eigen::VectorXf i = (Wi * x + Ui * h_prev + bi).sigmoid();Eigen::VectorXf o = (Wo * x + Uo * h_prev + bo).sigmoid();Eigen::VectorXf c_tilde = (Wc * x + Uc * h_prev + bc).tanh();c_prev = f.cwiseProduct(c_prev) + i.cwiseProduct(c_tilde);h_prev = o.cwiseProduct(c_prev.tanh());
}
流式PageRank(图数据更新)
std::unordered_map<int, double> page_rank;
std::unordered_map<int, std::vector<int>> graph;void update_rank(int node, const std::vector<int>& new_links) {graph[node] = new_links;// Recompute ranks periodically using power iteration:// rank_new[node] = (1-d)/N + d * sum(rank_old[in_neighbors]/out_degree[in_neighbors])
}
流式SVM(增量支持向量机)
#include <libsvm/svm.h>
svm_model* model = svm_load_model("initial_model");void update_svm(const svm_node* x, double y) {svm_parameter param = svm_get_parameters(model);param.svm_type = C_SVC;param.kernel_type = RBF;svm_add_training_data(model, x, y);svm_train_online(model, param);
}
流式遗传算法(实时优化)
std::vector<Chromosome> population;void stream_ga_update(const Chromosome& new_candidate) {population.push_back(new_candidate);std::sort(population.begin(), population.end(), [](auto& a, auto& b) {return a.fitness > b.fitness;});population.pop_back(); // Remove worst// Optionally apply crossover/mutation
}
流式强化学习(Q-Learning)
std::unordered_map<std::string, std::unordered_map<int, float>> Q_table;void update_q_value(const std::string& state, int action, float reward, const std::string& next_state, float gamma = 0.9, float alpha = 0.1) {float max_next = 0;for (auto& pair : Q_table[next_state]) {max_next = std::max(max_next, pair.second);}Q_table[state][action] += alpha * (reward + gamma * max_next - Q_table[state][action]);
}
流式AdaBoost(增量集成学习)
std::vector<std::pair<WeakClassifier, double>> ensemble;void adaboost_update(const DataPoint& x, int y_true) {for (auto& [clf, weight] : ensemble) {int y_pred = clf.predict(x);if (y_pred != y_true) {weight *= 1.5; // Increase weight for misclassified samples}}// Optionally add new weak classifiers
}
以上示例覆盖了实时数据处理、机器学习模型更新、统计计算等典型场景,可直接嵌入C++流处理管道。根据具体需求调整参数和数据结构即可。
基于相似名称算法
基于相似名称算法的推测
若目标为T-Digest算法(一种分位数近似计算算法),其C++实现可参考以下步骤:
#include <vector>
#include <algorithm>
#include <cmath>struct Centroid {double mean;double weight;
};class TDigest {
private:std::vector<Centroid> centroids;double compression;public:TDigest(double comp) : compression(comp) {}void add(double x, double w = 1.0) {// 合并或插入新质心auto it = std::lower_bound(centroids.begin(), centroids.end(), x, [](const Centroid& a, double val) { return a.mean < val; });if (it != centroids.end() && it->mean == x) {it->weight += w;} else {centroids.insert(it, {x, w});}// 压缩逻辑(需实现相邻质心合并策略)compress();}double quantile(double q) const {// 基于质心计算分位数double total = 0.0;for (const auto& c : centroids) total += c.weight;double target = q * total;double sum = 0.0;for (const auto& c : centroids) {if (sum + c.weight >= target) {return c.mean;}sum += c.weight;}return centroids.back().mean;}void compress() { /* 实现质心合并逻辑 */ }
};
面向时间序列的算法(T-Dimension)
若涉及时间序列分析(如T-Dimension
),可结合动态时间规整(DTW)或LSTM:
// 示例:DTW距离计算
#include <vector>
#include <limits>double dtw_distance(const std::vector<double>& s1, const std::vector<double>& s2) {size_t n = s1.size(), m = s2.size();std::vector<std::vector<double>> dp(n+1, std::vector<double>(m+1, std::numeric_limits<double>::max()));dp[0][0] = 0;for (size_t i = 1; i <= n; ++i) {for (size_t j = 1; j <= m; ++j) {double cost = std::abs(s1[i-1] - s2[j-1]);dp[i][j] = cost + std::min({dp[i-1][j], dp[i][j-1], dp[i-1][j-1]});}}return dp[n][m];
}
自研算法设计建议
若需从零实现自定义AI算法,建议以下框架:
-
定义目标
明确算法用途(如分类、聚类或优化),例如基于梯度提升的决策树(GBDT)变种。 -
核心数据结构
使用Eigen库处理矩阵运算,或自定义图结构表示节点关系。 -
关键操作
实现类似以下聚合函数的操作:template<typename T> T weighted_merge(const T& a, const T& b, double alpha) {return alpha * a + (1 - alpha) * b; }
-
性能优化
使用OpenMP并行化计算密集型部分,或CUDA加速GPU运算。
如需更精确的实现方案,建议提供算法的具体应用场景或数学描述。
C++实现简易图书管理系统实例
以下是基于C++的简易图书管理系统实现示例,涵盖不同功能模块和实现方式:
基础版本(控制台应用)
1. 基本图书类定义
class Book {
public:string title;string author;int id;bool isAvailable;
};
2. 图书添加功能
void addBook(vector<Book>& library) {Book newBook;cout << "Enter book title: ";getline(cin, newBook.title);cout << "Enter author: ";getline(cin, newBook.author);newBook.id = library.size() + 1;newBook.isAvailable = true;library.push_back(newBook);
}
3. 图书显示功能
void displayBooks(const vector<Book>& library) {for (const auto& book : library) {cout << "ID: " << book.id << "\nTitle: " << book.title << "\nAuthor: " << book.author << "\nStatus: " << (book.isAvailable ? "Available" : "Borrowed") << endl;}
}
4. 图书搜索功能
void searchBook(const vector<Book>& library, const string& title) {for (const auto& book : library) {if (book.title.find(title) != string::npos) {cout << "Book found:\n" << book.title << " by " << book.author << endl;return;}}cout << "Book not found." << endl;
}
5. 图书借阅功能
void borrowBook(vector<Book>& library, int id) {for (auto& book : library) {if (book.id == id && book.isAvailable) {book.isAvailable = false;cout << "Book borrowed successfully." << endl;return;}}cout << "Book not available or invalid ID." << endl;
}
6. 图书归还功能
void returnBook(vector<Book>& library, int id) {for (auto& book : library) {if (book.id == id && !book.isAvailable) {book.isAvailable = true;cout << "Book returned successfully." << endl;return;}}cout << "Invalid ID or book not borrowed." << endl;
}
7. 文件存储功能
void saveToFile(const vector<Book>& library, const string& filename) {ofstream outFile(filename);for (const auto& book : library) {outFile << book.id << "," << book.title << "," << book.author << "," << book.isAvailable << "\n";}outFile.close();
}
8. 文件加载功能
void loadFromFile(vector<Book>& library, const string& filename) {ifstream inFile(filename);string line;while (getline(inFile, line)) {stringstream ss(line);Book book;string temp;getline(ss, temp, ',');book.id = stoi(temp);getline(ss, book.title, ',');getline(ss, book.author, ',');getline(ss, temp);book.isAvailable = (temp == "1");library.push_back(book);}inFile.close();
}
9. 菜单界面
void displayMenu() {cout << "\nLibrary Management System\n";cout << "1. Add Book\n";cout << "2. Display All Books\n";cout << "3. Search Book\n";cout << "4. Borrow Book\n";cout << "5. Return Book\n";cout << "6. Exit\n";
}
10. 主程序循环
int main() {vector<Book> library;int choice;do {displayMenu();cin >> choice;cin.ignore();switch(choice) {case 1: addBook(library); break;case 2: displayBooks(library); break;case 3: {string title;cout << "Enter title to search: ";getline(cin, title);searchBook(library, title);break;}case 6: saveToFile(library, "library.txt"); break;}} while(choice != 6);return 0;
}
进阶功能实现
11. 图书分类系统
enum class Category { FICTION, NON_FICTION, SCIENCE, HISTORY };class Book {// ...其他成员Category category;
};void displayByCategory(const vector<Book>& library, Category cat) {for (const auto& book : library) {if (book.category == cat) {cout << book.title << endl;}}
}
12. 用户系统
class User {
public:string name;int id;vector<int> borrowedBooks;
};vector<User> users;void registerUser() {User newUser;cout << "Enter user name: ";getline(cin, newUser.name);newUser.id = users.size() + 1;