MIT线性代数02_矩阵消元
1. Elimination
pivot 主元
[121381041]−>[12102−2041]−>[12102−2005] \begin{bmatrix} 1 & 2 & 1\\ 3 & 8 & 1\\ 0 & 4 & 1\\ \end{bmatrix} -> \begin{bmatrix} 1 & 2 & 1 \\ 0 & 2 & -2 \\ 0 & 4 & 1 \\ \end{bmatrix} -> \begin{bmatrix} 1 & 2 & 1 \\ 0 & 2 & -2\\ 0 & 0 & 5\\ \end{bmatrix} 130284111−>1002241−21−>1002201−25
2. Back-substitution
augumented matrix 增广矩阵
[1212381120412]−>[121202−260412]−>[121202−26005−10] \begin{bmatrix} 1 & 2 & 1 & 2 \\ 3 & 8 & 1 & 12 \\ 0 & 4 & 1 & 2 \\ \end{bmatrix} -> \begin{bmatrix} 1 & 2 & 1 & 2\\ 0 & 2 & -2 & 6\\ 0 & 4 & 1 & 2\\ \end{bmatrix} -> \begin{bmatrix} 1 & 2 & 1 & 2 \\ 0 & 2 & -2& 6 \\ 0 & 0 & 5 & -10\\ \end{bmatrix} 1302841112122−>1002241−21262−>1002201−2526−10
3. Elimination matrices
- identity matrix 单位矩阵
- elementary matrix 初等矩阵
- associative law 结合律
- par·en·thesis n. /pəˈrenθəsɪs/= bracket
- permutation matrix 置换矩阵
- Inverse
Step 1: Matries: subtract 3 x row1 from row2
$$
\begin{bmatrix}
1 & 0 & 0 \
-3 & 1 & 0 \
0 & 0 & 1 \
\end{bmatrix}
\begin{bmatrix}
1 & 2 & 1 & 2 \
3 & 8 & 1 & 12 \
0 & 4 & 1 & 2 \
\end{bmatrix}
\begin{bmatrix}
1 & 2 & 1 & 2 \
0 & 2 & -2 & 6 \
0 & 4 & 1 & 2 \
\end{bmatrix}
$$
Step 2: Subtract 2 x row2 from row3
$$
\begin{bmatrix}
1 & 0 & 0 \
0 & 1 & 0 \
0 & -2& 1 \
\end{bmatrix}
\begin{bmatrix}
1 & 2 & 1 & 2 \
0 & 2 & -2 & 6 \
0 & 4 & 1 & 2 \
\end{bmatrix}
\begin{bmatrix}
1 & 2 & 1 & 2 \
0 & 2 & -2 & 6 \
0 & 0 & 5 & -10 \
\end{bmatrix}
$$
E32(E21A)=U(E32E21)A=U E_{32} (E_{21} A) = U \\ (E_{32} E_{21}) A = U E32(E21A)=U(E32E21)A=U
4. Matrix Multiplication
矩阵乘以一个列向量,相当于矩阵的列的线性组合。
一个行向量乘以一个矩阵,相当于矩阵的行的线性组合。
Permutation
Exchange row1 and row2
$$
\begin{bmatrix}
0 & 1 \
1 & 0 \
\end{bmatrix}
\begin{bmatrix}
a & b \
c & d \
\end{bmatrix}
\begin{bmatrix}
c & d \
a & b \
\end{bmatrix}
$$
$$
\begin{bmatrix}
a & b \
c & d \
\end{bmatrix}
\begin{bmatrix}
0 & 1 \
1 & 0 \
\end{bmatrix}
\begin{bmatrix}
b & a \
d & c \
\end{bmatrix}
$$
Inverses
$$
\begin{bmatrix}
1 & 0 & 0 \
3 & 1 & 0 \
0 & 0 & 1 \
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 0 \
-3 & 1 & 0 \
0 & 0 & 1 \
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 0 \
0 & 1 & 0 \
0 & 0 & 1 \
\end{bmatrix}
$$