omniparser v2 本地部署及制作docker镜像(20250715)
关于 omniparser v2 本地部署,网上资料不算多,尤其是对于土蔷内用户,还是有些坑的。
1、安装步骤
可参考两个CSDN博客:
(1)大模型实战 - ‘OmniParser-V2本地部署安装 链接
(2)微软开源神器OmniParser-v2.0本地部署教程 链接
2、排错
(1)缺 microsoft/Florence-2-base 或其他的一些模型权重,都可以去 modelscope 下载。网站上有下载命令。
(2)提示:
To use Transformers in an offline or firewalled environment requires the downloaded and cached files ahead of time.
根据官方 文档 说明
修改 util/utils.py 文件中
processor = AutoProcessor.from_pretrained("/home/xxxxxxx/OmniParser/microsoft/Florence-2-base", local_files_only=True,trust_remote_code=True)
主要是把 microsoft/Florence-2-base 这个模型名换成具体的文件路径,并设置 trust_remote_code=True
(3)更换镜像(可选)
刚才提到的文章:微软开源神器OmniParser-v2.0本地部署教程(链接),其中提到更换镜像,对于不熟悉的人来说,可能不知道作者在说什么。这里补充:
其实是更换huggingface镜像服务器:
位置:transformers/constants.py
(例如:~/.local/lib/python3.10/site-packages/transformers/constants.py)
位置:huggingface_hub/constants.py
(例如:~/.local/lib/python3.10/site-packages/huggingface_hub/constants.py)
(4)错误:
Please check your internet connection. This can happen if your antivirus software blocks the download of this file. You can install manually by following these steps:
1. Download this file: https://cdn-media.huggingface.co/frpc-gradio-0.3/frpc_linux_arm64
2. Rename the downloaded file to: frpc_linux_arm64_v0.3
3. Move the file to this location: /home/xxxxxx/miniconda3/envs/omni/lib/python3.12/site-packages/gradio
gitee上有 frpc_linux_arm64 这个文件,可以去下载。然后按照提示改名、移动位置、增加权限:
chmod +x /home/xxxx/miniconda3/envs/omni/lib/python3.12/site-packages/gradio/frpc_linux_arm64_v0.3
(5)提示:
TypeError: argument of type 'bool' is not iterable
Could not create share link. Please check your internet connection or our status page: https://status.gradio.app.
改 gradio_demo.py 文件的下面一行代码
demo.launch(share=False, server_port=7861, server_name='0.0.0.0')
设置share=False
(6)提示:
Florence2ForConditionalGeneration.forward() got an unexpected keyword argument 'images'
定位 util/utils.py 文件中
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, torch_dtype=torch.float32, trust_remote_code=True)
前面加一句:
model_name_or_path="/home/xxxxxx/OmniParser/microsoft/Florence-2-base-ft"
因为前面代码有默认设置:
model_name_or_path="Salesforce/blip2-opt-2.7b"
3、构建 docker 镜像
(1)先用豆包将 gradio_demo.py 改成接收 http 请求的服务器。
from typing import Optional
import base64
import io
import os
from flask import Flask, request, jsonify
from PIL import Image
import numpy as np
import torch
from util.utils import check_ocr_box, get_yolo_model, get_caption_model_processor, get_som_labeled_imgapp = Flask(__name__)yolo_model = get_yolo_model(model_path='weights/icon_detect/model.pt')
caption_model_processor = get_caption_model_processor(model_name="florence2", model_name_or_path="weights/icon_caption_florence")
# caption_model_processor = get_caption_model_processor(model_name="blip2", model_name_or_path="weights/icon_caption_blip2")DEVICE = torch.device('cuda')def process(image_input,box_threshold,iou_threshold,use_paddleocr,imgsz
) -> Optional[Image.Image]:box_overlay_ratio = image_input.size[0] / 3200draw_bbox_config = {'text_scale': 0.8 * box_overlay_ratio,'text_thickness': max(int(2 * box_overlay_ratio), 1),'text_padding': max(int(3 * box_overlay_ratio), 1),'thickness': max(int(3 * box_overlay_ratio), 1),}ocr_bbox_rslt, is_goal_filtered = check_ocr_box(image_input, display_img=False, output_bb_format='xyxy',goal_filtering=None, easyocr_args={'paragraph': False,'text_threshold': 0.9},use_paddleocr=use_paddleocr)text, ocr_bbox = ocr_bbox_rsltdino_labled_img, label_coordinates, parsed_content_list = get_som_labeled_img(image_input, yolo_model,BOX_TRESHOLD=box_threshold,output_coord_in_ratio=True,ocr_bbox=ocr_bbox,draw_bbox_config=draw_bbox_config,caption_model_processor=caption_model_processor,ocr_text=text,iou_threshold=iou_threshold,imgsz=imgsz)image = Image.open(io.BytesIO(base64.b64decode(dino_labled_img)))print('finish processing')parsed_content_list = '\n'.join([f'icon {i}: ' + str(v) for i, v in enumerate(parsed_content_list)])return image, str(parsed_content_list)@app.route('/process_image', methods=['POST'])
def process_image():try:# 获取图像数据file = request.files['image']image = Image.open(file.stream)# 获取参数box_threshold = float(request.form.get('box_threshold', 0.05))iou_threshold = float(request.form.get('iou_threshold', 0.1))use_paddleocr = bool(request.form.get('use_paddleocr', True))imgsz = int(request.form.get('imgsz', 640))# 处理图像processed_image, parsed_content = process(image, box_threshold, iou_threshold, use_paddleocr, imgsz)# 将处理后的图像转换为 base64 编码buffered = io.BytesIO()processed_image.save(buffered, format="PNG")img_str = base64.b64encode(buffered.getvalue()).decode()# 返回结果return jsonify({'image': img_str,'parsed_content': parsed_content})except Exception as e:return jsonify({'error': str(e)}), 500if __name__ == '__main__':app.run(host='0.0.0.0', port=7861)
可以运行测试代码:
curl -X POST \-F "image=@path/to/your/image.jpg" \-F "box_threshold=0.05" \-F "iou_threshold=0.1" \-F "use_paddleocr=true" \-F "imgsz=640" \http://localhost:7861/process_image
(2)创建 dockerfile (放在 omniparser 文件夹下)
# 使用 Python 3.12 作为基础镜像
FROM python:3.12-slim# 设置工作目录
WORKDIR /app# 安装系统依赖
RUN apt-get update && apt-get install -y \git \curl \wget \unzip \&& rm -rf /var/lib/apt/lists/*# 复制项目文件
COPY . /app# 安装 Python 依赖
RUN pip install --no-cache-dir -r requirements.txt# 解压权重文件(如果需要)
RUN if [ -f "omniparse_weights.zip" ]; then unzip omniparse_weights.zip -d weights; fi# 暴露应用端口(根据实际应用修改)
EXPOSE 7861 # 设置环境变量(根据需要添加)
ENV PYTHONPATH="/app:$PYTHONPATH"# 定义启动命令(根据实际应用修改)
CMD ["python", "flask_demo.py"]
(3)运行docker可能需要设置镜像
sudo mkdir -p /etc/docker
sudo tee /etc/docker/daemon.json <<-'EOF'
{"registry-mirrors": ["https://docker.xuanyuan.me/"]
}
EOF
重启 Docker 服务:
sudo systemctl daemon-reload
sudo systemctl restart docker
测试一下:
docker run hello-world
(4)构建 docker 镜像
# 构建镜像
docker build -t omniparser:latest .# 运行容器(前台模式)
docker run -it --rm -p 7861:7861 -p 5000:5000 omniparser:latest# 或使用后台模式
docker run -d -p 7861:7861 --name omniparser omniparser:latest