当前位置: 首页 > java >正文

毕业项目推荐:27-基于yolov8/yolov5/yolo11的电塔缺陷检测识别系统(Python+卷积神经网络)

文章目录

  • 项目介绍大全(可点击查看,不定时更新中)
  • 概要
  • 一、整体资源介绍
    • 技术要点
    • 功能展示:
      • 功能1 支持单张图片识别
      • 功能2 支持遍历文件夹识别
      • 功能3 支持识别视频文件
      • 功能4 支持摄像头识别
      • 功能5 支持结果文件导出(xls格式)
      • 功能6 支持切换检测到的目标查看
  • 二、系统环境与依赖配置说明
  • 三、数据集
  • 四、算法介绍
    • 1. YOLOv8 概述
      • 简介
    • 2. YOLOv5 概述
      • 简介
    • 3. YOLO11 概述
      • YOLOv11:Ultralytics 最新目标检测模型
  • 🌟 五、模型训练步骤
  • 🌟 六、模型评估步骤
  • 🌟 七、训练结果
  • 🌟八、完整代码

往期经典回顾

项目项目
基于yolov8的车牌检测识别系统基于yolov8/yolov5/yolo11的动物检测识别系统
基于yolov8的人脸表情检测识别系统基于深度学习的PCB板缺陷检测系统
基于yolov8/yolov5的茶叶等级检测系统基于yolov8/yolov5的农作物病虫害检测识别系统
基于yolov8/yolov5的交通标志检测识别系统基于yolov8/yolov5的课堂行为检测识别系统
基于yolov8/yolov5的海洋垃圾检测识别系统基于yolov8/yolov5的垃圾检测与分类系统
基于yolov8/yolov5的行人摔倒检测识别系统基于yolov8/yolov5的草莓病害检测识别系统

具体项目资料请看项目介绍大全

项目介绍大全(可点击查看,不定时更新中)

在这里插入图片描述

概要

电塔缺陷检测在电力设备巡检、运行维护和故障预防中起着至关重要的作用,不仅能帮助相关部门实时监测电塔运行状态,还为智能化检测系统提供了可靠的数据支撑。本文介绍了一款基于深度学习框架的电塔缺陷检测模型,该模型使用了大量不同类型和状态的电塔图像进行训练,能够准确识别各种环境中的电塔缺陷。系统可在不同场景下进行检测,包括多种光照条件、复杂背景、电塔遮挡等。

此外,我们开发了一款带有UI界面电塔缺陷检测识别系统,支持实时检测电塔缺陷,并能够直观地展示检测结果。系统采用PythonPyQt5开发,可以对图片、视频及摄像头输入进行目标检测,同时支持检测结果的保存。本文还提供了完整的Python代码和详细的使用指南,供有兴趣的读者学习参考。获取完整代码资源,请参见文章末尾。
  
yolov8/yolov5界面如下

在这里插入图片描述

yolo11界面如下
在这里插入图片描述

关键词:电塔缺陷检测;深度学习;特征融合;注意力机制;卷积神经网络

在这里插入图片描述

一、整体资源介绍

项目中所用到的算法模型和数据集等信息如下:

算法模型:
    yolov8yolov8 + SE注意力机制yolov5yolov5 + SE注意力机制yolo11yolo11 + SE注意力机制

数据集:
    网上下载的数据集,格式都已转好,可直接使用。

以上是本套代码算法的简单说明,添加注意力机制是本套系统的创新点

技术要点

  • OpenCV:主要用于实现各种图像处理和计算机视觉相关任务。
  • Python:采用这种编程语言,因其简洁易学且拥有大量丰富的资源和库支持。
  • 数据增强技术: 翻转、噪点、色域变换,mosaic等方式,提高模型的鲁棒性。

功能展示:

部分核心功能如下:

  • 功能1: 支持单张图片识别
  • 功能2: 支持遍历文件夹识别
  • 功能3: 支持识别视频文件
  • 功能4: 支持摄像头识别
  • 功能5: 支持结果文件导出(xls格式)
  • 功能6: 支持切换检测到的目标查看

功能1 支持单张图片识别

系统支持用户选择图片文件进行识别。通过点击图片选择按钮,用户可以选择需要检测的图片,并在界面上查看所有识别结果。该功能的界面展示如下图所示:

在这里插入图片描述

在这里插入图片描述

功能2 支持遍历文件夹识别

系统支持选择整个文件夹进行批量识别。用户选择文件夹后,系统会自动遍历其中的所有图片文件,并将识别结果实时更新显示在右下角的表格中。该功能的展示效果如下图所示:

在这里插入图片描述

在这里插入图片描述

功能3 支持识别视频文件

在许多情况下,我们需要识别视频中的目标。因此,系统设计了视频选择功能。用户点击视频按钮即可选择待检测的视频,系统将自动解析视频并逐帧识别多个车牌,同时将识别结果记录在右下角的表格中。以下是该功能的展示效果:
在这里插入图片描述

在这里插入图片描述

功能4 支持摄像头识别

在许多场景下,我们需要通过摄像头实时识别目标。为此,系统提供了摄像头选择功能。用户点击摄像头按钮后,系统将自动调用摄像头并进行实时车牌识别,识别结果会即时记录在右下角的表格中。
在这里插入图片描述

在这里插入图片描述

功能5 支持结果文件导出(xls格式)

本系统还添加了对识别结果的导出功能,方便后续查看,目前支持导出cvsxls两种数据格式,功能展示如下:
在这里插入图片描述

在这里插入图片描述

功能6 支持切换检测到的目标查看

在这里插入图片描述

在这里插入图片描述

二、系统环境与依赖配置说明

本项目采用 Python 3.8.10 作为开发语言,整个后台逻辑均由 Python 编写,主要依赖环境如下:
图形界面框架:

  • PyQt5 5.15.9:用于搭建系统图形用户界面,实现窗口交互与组件布局。 深度学习框架:
  • torch 1.9.0+cu111: PyTorch 深度学习框架,支持 CUDA 11.1 加速,用于模型构建与推理。
  • torchvision 0.10.0+cu111:用于图像处理、数据增强及模型组件辅助。 CUDA与 cuDNN(GPU 加速支持):
  • CUDA 11.1.1(版本号:cuda_11.1.1_456.81):用于 GPU 加速深度学习运算。
  • cuDNN 8.0.5.39(适用于 CUDA 11.1):NVIDIA 深度神经网络库,用于加速模型训练与推理过程。 图像处理与科学计算:
  • opencv-python 4.7.0.72:实现图像读取、显示、处理等功能。
  • numpy 1.24.4:用于高效数组计算及矩阵操作。
  • PIL (pillow) 9.5.0:图像文件读写与基本图像处理库。
  • matplotlib 3.7.1(可选):用于结果图形化展示与可视化调试。

三、数据集

本数据集共包含 8983 张图像,涵盖5种输电塔及相关设备的典型缺陷类型,适用于输电线路巡检、智能识别与故障分类研究等场景。

具体类别说明如下:

  • 绑定不当(improper_binding)
    该类别表示输电塔导线或拉线固定方式不规范,如钢丝松动、捆绑松弛等问题,可能导致线路不稳定或安全隐患。
  • 双套管缺失(double_case_miss)
    指本应设置双层绝缘或保护套的部分仅安装一层或完全缺失,存在较大的电气安全风险。
  • NLL套管缺失(nll_case_miss)
    专指某型号(如NLL系列)紧固装置或护套缺失,通常影响接线可靠性和绝缘防护。
  • 横杆腐蚀(bar_corrosion)
    表示输电塔横向支撑杆出现明显锈蚀、掉漆或金属疲劳的情况,需尽快维护处理,以防结构受损。
  • 塔头损坏(tower_head_damage)
    包括塔顶的金属构件破裂、弯曲、缺失等多种物理损伤,属高危故障,影响整个输电系统的稳定性。

在这里插入图片描述

四、算法介绍

1. YOLOv8 概述

简介

YOLOv8算法的核心特性和改进如下:

  • 全新SOTA模型
    YOLOv8 提供了全新的最先进(SOTA)的模型,包括P5 640P6 1280分辨率的目标检测网络,同时还推出了基于YOLACT的实例分割模型。与YOLOv5类似,它提供了N/S/M/L/X五种尺度的模型,以满足不同场景的需求。
  • Backbone
    骨干网络和Neck部分参考了YOLOv7 ELAN的设计思想。
    YOLOv5的C3结构替换为梯度流更丰富的C2f结构
    针对不同尺度的模型,调整了通道数,使其更适配各种任务需求。
    在这里插入图片描述
    网络结构如下:
    在这里插入图片描述

相比之前版本,YOLOv8对模型结构进行了精心微调,不再是“无脑”地将同一套参数应用于所有模型,从而大幅提升了模型性能。这种优化使得不同尺度的模型在面对多种场景时都能更好地适应。

然而,新引入的C2f模块虽然增强了梯度流,但其内部的Split等操作对特定硬件的部署可能不如之前的版本友好。在某些场景中,C2f模块的这些特性可能会影响模型的部署效率

2. YOLOv5 概述

简介

YOLOV5有YOLOv5n,YOLOv5s,YOLOv5m,YOLOV5l、YOLO5x五个版本。这个模型的结构基本一样,不同的是deth_multiole模型深度和width_multiole模型宽度这两个参数。就和我们买衣服的尺码大小排序一样,YOLOV5n网络是YOLOV5系列中深度最小,特征图的宽度最小的网络。其他的三种都是在此基础上不断加深,不断加宽。不过最常用的一般都是yolov5s模型。

在这里插入图片描述
本系统采用了基于深度学习的目标检测算法——YOLOv5。作为YOLO系列算法中的较新版本,YOLOv5在检测的精度和速度上相较于YOLOv3和YOLOv4都有显著提升。它的核心理念是将目标检测问题转化为回归问题,简化了检测过程并提高了性能。

YOLOv5引入了一种名为SPP (Spatial Pyramid Pooling)的特征提取方法。SPP能够在不增加计算量的情况下,提取多尺度特征,从而显著提升检测效果。

在检测流程中,YOLOv5首先通过骨干网络对输入图像进行特征提取,生成一系列特征图。然后,对这些特征图进行处理,生成检测框和对应的类别概率分数,即每个检测框内物体的类别和其置信度

YOLOv5的特征提取网络采用了CSPNet (Cross Stage Partial Network)结构。它将输入特征图分成两部分,一部分通过多层卷积处理,另一部分进行直接下采样,最后再将两部分特征图进行融合。这种设计增强了网络的非线性表达能力,使其更擅长处理复杂背景和多样化物体的检测任务。

在这里插入图片描述

3. YOLO11 概述

YOLOv11:Ultralytics 最新目标检测模型

YOLOv11 是 Ultralytics 公司在 2024 年推出的 YOLO 系列目标检测模型的最新版本。以下是对 YOLOv11 的具体介绍:

主要特点

  1. 增强的特征提取

    • 采用改进的骨干和颈部架构,如在主干网络中引入了 c2psa 组件,并将 c2f 升级为 c3k2
    • c3k 允许用户自定义卷积模块的尺寸,提升了灵活性。
    • c2psa 通过整合 psa(位置敏感注意力机制)来增强模型的特征提取效能。
    • 颈部网络采用了 pan 架构,并集成了 c3k2 单元,有助于从多个尺度整合特征,并优化特征传递的效率。
  2. 针对效率和速度优化

    • 精细的架构设计和优化的训练流程,在保持准确性和性能最佳平衡的同时,提供更快的处理速度。
    • 相比 YOLOv10,YOLOv11 的延迟降低了 25%-40%,能够达到每秒处理 60 帧 的速度,是目前最快的目标检测模型之一。
  3. 更少的参数,更高的准确度

    • YOLOv11mCOCO 数据集上实现了比 YOLOv8m 更高的 mAP,参数减少了 22%,提高了计算效率,同时不牺牲准确度。
  4. 跨环境的适应性

    • 可无缝部署在 边缘设备云平台 和配备 NVIDIA GPU 的系统上,确保最大的灵活性。
  5. 支持广泛的任务范围

    • 支持多种计算机视觉任务,包括 目标检测实例分割图像分类姿态估计定向目标检测(OBB)

架构改进

  1. 主干网络

    • 引入了 c2psa 组件,并将 c2f 升级为 c3k2
    • c3k 支持用户自定义卷积模块尺寸,增强灵活性。
    • c2psa 整合了 psa(位置敏感注意力机制),提升特征提取效能。
  2. 颈部网络

    • 采用 pan 架构,并集成了 c3k2 单元,帮助从多个尺度整合特征并优化特征传递效率。
  3. 头部网络

    • YOLOv11 的检测头设计与 YOLOv8 大致相似。
    • 在分类(cls)分支中,采用了 深度可分离卷积 来增强性能。

性能优势

  1. 精度提升

    • COCO 数据集上取得了显著的精度提升:
      • YOLOv11x 模型的 mAP 得分高达 54.7%
      • 最小的 YOLOv11n 模型也能达到 39.5%mAP 得分
    • 与前代模型相比,精度有明显进步。
  2. 速度更快

    • 能够满足实时目标检测需求

🌟 五、模型训练步骤

   提供封装好的训练脚本,如下图,更加详细的的操作步骤可以参考我的飞书在线文档:https://aax3oiawuo.feishu.cn/wiki/HLpVwQ4QWiTd4Ckdeifcvvdtnve , 强烈建议直接看文档去训练模型,文档是实时更新的,有任何的新问题,我都会实时的更新上去。另外B站也会提供视频。

  1. 使用pycharm打开代码,找到train.py打开,示例截图如下:
    在这里插入图片描述

  2. 修改 model_yaml 的值,根据自己的实际情况修改,想要训练 yolov8s模型 就 修改为 model_yaml = yaml_yolov8s, 训练 添加SE注意力机制的模型就修改为 model_yaml = yaml_yolov8_SE

  3. 修改data_path 数据集路径,我这里默认指定的是traindata.yaml 文件,如果训练我提供的数据,可以不用改

  4. 修改 model.train()中的参数,按照自己的需求和电脑硬件的情况更改

    # 文档中对参数有详细的说明
    model.train(data=data_path,             # 数据集imgsz=640,                  # 训练图片大小epochs=200,                 # 训练的轮次batch=2,                    # 训练batchworkers=0,                  # 加载数据线程数device='0',                 # 使用显卡optimizer='SGD',            # 优化器project='runs/train',       # 模型保存路径name=name,                  # 模型保存命名)
    
  5. 修改traindata.yaml文件, 打开 traindata.yaml 文件,如下所示:
    在这里插入图片描述
    在这里,只需修改 path 的值,其他的都不用改动(仔细看上面的黄色字体),我提供的数据集默认都是到 yolo 文件夹,设置到 yolo 这一级即可,修改完后,返回 train.py 中,执行train.py

  6. 打开 train.py ,右键执行。
    在这里插入图片描述

  7. 出现如下类似的界面代表开始训练了
    在这里插入图片描述

  8. 训练完后的模型保存在runs/train文件夹下
    在这里插入图片描述


🌟 六、模型评估步骤

  1. 打开val.py文件,如下图所示:
    在这里插入图片描述

  2. 修改 model_pt 的值,是自己想要评估的模型路径

  3. 修改 data_path ,根据自己的实际情况修改,具体如何修改,查看上方模型训练中的修改步骤

  4. 修改 model.val()中的参数,按照自己的需求和电脑硬件的情况更改

    model.val(data=data_path,           # 数据集路径imgsz=300,                # 图片大小,要和训练时一样batch=4,                  # batchworkers=0,                # 加载数据线程数conf=0.001,               # 设置检测的最小置信度阈值。置信度低于此阈值的检测将被丢弃。iou=0.6,                  # 设置非最大抑制 (NMS) 的交叉重叠 (IoU) 阈值。有助于减少重复检测。device='0',               # 使用显卡project='runs/val',       # 保存路径name='exp',               # 保存命名)
    
  5. 修改完后,即可执行程序,出现如下截图,代表成功(下图是示例,具体以自己的实际项目为准。)
    在这里插入图片描述

  6. 评估后的文件全部保存在在 runs/val/exp... 文件夹下
    在这里插入图片描述


🌟 七、训练结果

我们每次训练后,会在 run/train 文件夹下出现一系列的文件,如下图所示:
在这里插入图片描述

   如果大家对于上面生成的这些内容(confusion_matrix.png、results.png等)不清楚是什么意思,可以在我的知识库里查看这些指标的具体含义,示例截图如下:

在这里插入图片描述

🌟八、完整代码

   如果您希望获取博文中提到的所有实现相关的完整资源文件(包括测试图片、视频、Python脚本、UI文件、训练数据集、训练代码、界面代码等),这些文件已被全部打包。以下是完整资源包的截图

在这里插入图片描述

您可以通过下方演示视频视频简介部分进行获取

演示视频:

27-基于深度学习的电塔缺陷检测识别系统-yolov8/yolov5-经典版界面

27-基于深度学习的电塔缺陷检测识别系统-yolo11-彩色版界面

http://www.xdnf.cn/news/18900.html

相关文章:

  • 软件测试工程师面试题(含答案)
  • 重写BeanFactory初始化方法并行加载Bean
  • 6年前抄写的某品牌集成灶-蒸汽炉
  • Linux笔记10——shell编程基础-4
  • GraphRAG——v0.3.6版本使用详细教程、GraphRAG数据写入Neo4j图数据库、GraphRAG与Dify集成
  • 图像增强和评价
  • 脑电分析——学习笔记
  • 【系统架构设计(一)】系统工程与信息系统基础上:系统工程基础概念
  • 【Ubuntu系统实战】一站式部署与管理MySQL、MongoDB、Redis三大数据库
  • 负载均衡之平滑加权轮询(Smooth Weighted Round Robin)详解与实现
  • MIME类型与文件上传漏洞 - 网络安全视角
  • AI解决生活小事系列——用AI给我的电脑做一次“深度体检”
  • Windows下的异步IO通知模型
  • 一款基于 .NET 开源、功能强大的 Windows 搜索工具
  • C# .NET支持多线程并发的压缩组件
  • 2026 济南玉米深加工展:探索淀粉技术突破与可持续发展解决方案
  • 你真的了解操作系统吗?
  • Feign 调用为服务报 `HardCodedTarget(type=xxxClient, name=xxxfile, url=http://file)`异常
  • 大模型入门实战 | 基于 YOLO 数据集微调 Qwen2.5-VL-3B-Instruct 的目标检测任务
  • YggJS RButton 按钮组件 v1.0.0 使用教程
  • 【vue eslint】报错:Component name “xxxx“ should always be multi-word
  • 云上“安全管家”|移动云以云安全中心为企业数字化升级保驾护航
  • 科技信息差(8.26)
  • 【软考论文】论静态测试方法及其应用
  • PortSwigger靶场之Blind SQL injection with out-of-band interaction通关秘籍
  • 软考-系统架构设计师 计算机系统基础知识详细讲解
  • 【46页PPT】AI智能中台用ABC+IOT重新定义制造(附下载方式)
  • 相机Camera日志实例分析之十五:相机Camx【照片后置HDR拍照】单帧流程日志详解
  • 2-5 倍性能提升,30% 成本降低,阿里云 SelectDB 存算分离架构助力波司登集团实现降本增效
  • 支持向量机核心知识总结