当前位置: 首页 > java >正文

【新手向】PyTorch常用Tensor shape变换方法

【新手向】PyTorch常用Tensor shape变换方法

前言

B站UP主科研水神大队长的视频中介绍了“缝合模块”大法,其中专门强调了“深度学习 玩的就是shape”。受此启发,专门整理能够调整tensor形状的几个内置函数,方便以后更好地调整PyTorch代码中的模型结构。

squeeze, unsqueeze

  • torch.squeeze()
  • torch.unsqueeze()

squeeze()用于压缩掉指定的维度,这个维度的取值必须是1,否则无效。unsqueeze()用于在指定的位置增加一个维度。

代码实例:

import torch# image
x1 = torch.ones([4, 3, 256, 256]) # batch_size, channels, height, width
print("x1.shape:", x1.shape) # x1.shape: torch.Size([4, 3, 256, 256])x2 = torch.ones([1, 1, 3])
print("x2.shape:", x2.shape) # x2.shape: torch.Size([1, 1, 3])y1 = x1.squeeze(0)
print("y1.shape:", y1.shape) # y1.shape: torch.Size([4, 3, 256, 256])y2 = x2.squeeze(0)
print("y2.shape:", y2.shape) # y2.shape: torch.Size([1, 3])y6 = x2.squeeze(1)
print("y6.shape:", y6.shape) # y6.shape: torch.Size([1, 3])y7 = x2.squeeze(-1)
print("y7.shape:", y7.shape) # y7.shape: torch.Size([1, 1, 3])y3 = x1.unsqueeze(0)
print("y3.shape:", y3.shape) # y3.shape: torch.Size([1, 4, 3, 256, 256])y4 = x1.unsqueeze(1)
print("y4.shape:", y4.shape) # y4.shape: torch.Size([4, 1, 3, 256, 256])y5 = x1.unsqueeze(-1)
print("y5.shape:", y5.shape) # y5.shape: torch.Size([4, 3, 256, 256, 1])

transpose

transpose()用于调整tensor的维度顺序,在计算机视觉的任务中经常需要调整通道顺序,比如有的模型输出的顺序是(channel, height, width),而有的输出顺序是(height, width, channel),需要通过调换顺序来匹配输入输出。

transpose()有两种用法:

  • torch.transpose()
  • x.transpose()

代码实例:

import torchx1 = torch.ones([4, 3, 256, 256]) # batch_size, channels, height, width
print("x1.shape:", x1.shape) # x1.shape: torch.Size([4, 3, 256, 256])x2 = torch.ones([1, 1, 3])
print("x2.shape:", x2.shape) # x2.shape: torch.Size([1, 1, 3])trans1 = torch.transpose(x1, 0, 1)
print("trans1.shape:", trans1.shape) # trans1.shape: torch.Size([3, 4, 256, 256])trans2 = torch.transpose(x2, 1, 2)
print("trans2.shape:", trans2.shape) # trans2.shape: torch.Size([1, 3, 1])trans3 = x1.transpose(0, 1)
print("trans3.shape:", trans3.shape) # trans3.shape: torch.Size([3, 4, 256, 256])

reshape

reshape()能够在总元素数量不产生变化的前提下改变tensor的形状。它也可以用于处理numpy array的形状。

代码实例:

import torch
import numpy as npx3 = torch.Tensor([1, 2, 3, 4, 5, 6])
print("x3.shape:", x3.shape) # x3.shape: torch.Size([6])reshape1 = x3.reshape(2, 3)
print("reshape1.shape:", reshape1.shape) # reshape1.shape: torch.Size([2, 3])x4 = torch.ones([4, 4, 3, 256, 256])
print("x4.shape:", x4.shape) # x4.shape: torch.Size([4, 4, 3, 256, 256])reshape2 = x4.reshape(4*4, 3, 256, 256)
print("reshape2.shape:", reshape2.shape) # reshape2.shape: torch.Size([16, 3, 256, 256])x5 = np.array([1, 2, 3, 4, 5, 6])
print("x5.shape:", x5.shape) # x5.shape: (6,)reshape3 = x5.reshape(2, 3)
print("reshape3.shape:", reshape3.shape) # reshape3.shape: (2, 3)

view

view()的作用与reshape()的作用相似,也是在总元素数量不产生变化的前提下改变形状,但view()只能对张量进行操作。

代码实例:

import torchx3 = torch.Tensor([1, 2, 3, 4, 5, 6])
print("x3.shape:", x3.shape) # x3.shape: torch.Size([6])view1 = x3.view(2, 3)
print("view1.shape:", view1.shape) # view1.shape: torch.Size([2, 3])
print("view1:", view1)
# view1: tensor([[1., 2., 3.],
#         [4., 5., 6.]])view2 = x3.view(3, 2)
print("view2.shape:", view2.shape) # view2.shape: torch.Size([3, 2])
print("view2:", view2) 
# view2: tensor([[1., 2.],
#         [3., 4.],
#         [5., 6.]])

permute

permute()用于调整维度的顺序。与transpose()一次仅能“对调”两个维度的顺序不同,permute()可以一次调整多个维度的顺序。

代码实例:

import torchx4 = torch.ones([4, 4, 3, 256, 256])
print("x4.shape:", x4.shape) # x4.shape: torch.Size([4, 4, 3, 256, 256])permute1 = x4.permute(1, 3, 4, 0, 2)
print("permute1.shape:", permute1.shape) # permute1.shape: torch.Size([4, 256, 256, 4, 3])
http://www.xdnf.cn/news/15869.html

相关文章:

  • Spring Boot 订单超时自动取消的 3 种主流实现方案
  • 响应式编程入门教程第九节:UniRx 高级特性与自定义
  • LeetCode|Day20|9. 回文数|Python刷题笔记
  • DOM型XSS破坏
  • PID控制原理分析及应用(稳态误差详细分析)(一)
  • 如何升级Docker部署的Dify
  • API接口签名和敏感信息加密使用国密SM方案
  • 数据结构——时间复杂度
  • Python知识点4-嵌套循环break和continue使用死循环
  • 论文分享(一)
  • Spring MVC上下文容器在Web容器中是如何启动的(源码深入剖析)?
  • Self-Consistency:跨学科一致性的理论与AI推理的可靠性基石
  • Linux操作系统从入门到实战(十一)回车换行问题与用户缓冲区问题
  • 通俗易懂神经网络:从基础到实现
  • 学习日志15 python
  • 零基础入门 AI 运维:Linux 部署全栈项目实战(MySQL+Nginx + 私有化大模型)
  • 【1】计算机视觉方法(更新)
  • selenium4 web自动化测试
  • 面向对象基础笔记
  • QFutureInterface和QFuture间联系与区别
  • 《计算机网络》实验报告五 DNS协议分析与测量
  • 两个数据表的故事第 2 部分:理解“设计”Dk
  • ThinkPHP8极简上手指南:开启高效开发之旅
  • 项目案例:苏宁易购评论获取
  • 民法学学习笔记(个人向) Part.1
  • 【智能协同云图库】第一期:用户管理接口设计与功能实现
  • 【Java学习|黑马笔记|Day18】Stream流|获取、中间方法、终结方法、收集方法及其练习
  • 超大整数任意进制之间在线转换工具
  • 剑指offer67_构建乘积数组
  • 周志华《机器学习导论》第11章 特征选择与稀疏学习