当前位置: 首页 > ds >正文

DrissionPage 实战:动态 IP 代理与百度翻译 API 数据抓取

本文将详细介绍如何使用 DrissionPage 实现动态 IP 代理访问,并结合百度翻译 API 进行数据抓取与处理。

一、技术选型与架构设计

1.1 为什么选择 DrissionPage?

DrissionPage 作为新一代网络自动化工具,相比传统 Selenium + Requests 方案具有显著优势:

  • 混合引擎架构:在同一会话中无缝切换浏览器模式和无头请求模式

  • 连接池管理:内置 TCP 连接复用,减少资源开销

  • 智能等待机制:基于 DOM 状态而非固定时间的等待策略

  • 内存优化:相比 Selenium 减少 40%-60% 的内存占用

1.2 系统架构

应用层: User Interface → Business Logic → Data Processing核心层: DrissionPage Session Manager → Proxy Pool → Cache Manager基础层: Connection Pool → TLS Session复用 → DNS缓存

二、高性能代理池实现

2.1 智能代理调度器

import asyncio
import aiohttp
from typing import List, Dict
from dataclasses import dataclass
from abc import ABC, abstractmethod@dataclass
class ProxyMetrics:response_time: floatsuccess_rate: floatlast_used: floatconsecutive_failures: int = 0class BaseProxyProvider(ABC):@abstractmethodasync def get_proxies(self) -> List[str]:passclass ProxyPool:def __init__(self, providers: List[BaseProxyProvider]):self.providers = providersself.proxy_metrics: Dict[str, ProxyMetrics] = {}self.lock = asyncio.Lock()self.min_success_rate = 0.8self.max_response_time = 5.0async def get_optimal_proxy(self) -> str:"""基于性能指标选择最优代理"""async with self.lock:valid_proxies = [proxy for proxy, metrics in self.proxy_metrics.items()if (metrics.success_rate >= self.min_success_rate andmetrics.response_time <= self.max_response_time andmetrics.consecutive_failures < 3)]if not valid_proxies:await self.refresh_proxies()return await self.get_optimal_proxy()# 基于综合评分选择代理scored_proxies = []for proxy in valid_proxies:metrics = self.proxy_metrics[proxy]score = (metrics.success_rate * 0.6 + (1 / metrics.response_time) * 0.4)scored_proxies.append((proxy, score))scored_proxies.sort(key=lambda x: x[1], reverse=True)return scored_proxies[0][0]async def refresh_proxies(self):"""从所有提供商获取新鲜代理"""tasks = [provider.get_proxies() for provider in self.providers]results = await asyncio.gather(*tasks, return_exceptions=True)fresh_proxies = set()for result in results:if isinstance(result, list):fresh_proxies.update(result)# 更新指标库for proxy in fresh_proxies:if proxy not in self.proxy_metrics:self.proxy_metrics[proxy] = ProxyMetrics(response_time=2.0,success_rate=0.9,last_used=0.0)

2.2 代理健康检查系统

class ProxyHealthChecker:def __init__(self, proxy_pool: ProxyPool):self.proxy_pool = proxy_poolself.check_urls = ['https://httpbin.org/ip','https://api.ipify.org?format=json']async def check_proxy_health(self, proxy: str) -> bool:"""全面健康检查"""connector = aiohttp.TCPConnector(ssl=False)timeout = aiohttp.ClientTimeout(total=10)try:async with aiohttp.ClientSession(connector=connector, timeout=timeout) as session:# 测试多个端点for test_url in self.check_urls:try:start_time = asyncio.get_event_loop().time()async with session.get(test_url, proxy=f"http://{proxy}",headers={'User-Agent': 'Mozilla/5.0'}) as response:if response.status != 200:return False# 验证返回的IP是否匹配代理IPdata = await response.json()if 'ip' in data and data['ip'] not in proxy:return Falseexcept (aiohttp.ClientError, asyncio.TimeoutError):return Falsereturn Trueexcept Exception:return False

三、DrissionPage 高级配置与优化

3.1 优化会话配置

from DrissionPage import WebPage, SessionOptions, DriverOptions
from functools import lru_cacheclass OptimizedWebPage(WebPage):def __init__(self, proxy: str = None):# 驱动配置优化driver_options = DriverOptions()driver_options.headless()driver_options.no_sandbox()driver_options.disable_gpu()driver_options.set_argument('--disable-dev-shm-usage')driver_options.set_argument('--disable-blink-features=AutomationControlled')driver_options.set_experimental_option('excludeSwitches', ['enable-automation'])# 会话配置优化session_options = SessionOptions()session_options.timeout = 15session_options.retry_times = 2session_options.verify_ssl = Falsesuper().__init__(driver_options=driver_options,session_options=session_options)if proxy:self.set_proxy(proxy)@lru_cache(maxsize=1000)def cached_request(self, url: str, method: str = 'GET', **kwargs):"""带缓存的请求方法"""cache_key = f"{method}_{url}_{str(kwargs)}"return super().request(url, method, **kwargs)

3.2 连接池与会话复用

from contextlib import asynccontextmanager
import threadingclass ConnectionManager:_instances = {}_lock = threading.Lock()@classmethoddef get_session(cls, proxy: str = None) -> WebPage:"""获取复用会话实例"""with cls._lock:if proxy not in cls._instances:cls._instances[proxy] = OptimizedWebPage(proxy)return cls._instances[proxy]@classmethod@asynccontextmanagerasync def managed_session(cls, proxy: str = None):"""上下文管理的会话"""session = cls.get_session(proxy)try:yield sessionexcept Exception as e:session.close()with cls._lock:if proxy in cls._instances:del cls._instances[proxy]raise e

四、高级错误处理与重试机制

4.1 智能重试策略


from tenacity import retry, stop_after_attempt, wait_exponential, retry_if_exception_type
import requests.exceptions as req_exceptionsclass RetryPolicy:@retry(stop=stop_after_attempt(3),wait=wait_exponential(multiplier=1, min=2, max=10),retry=retry_if_exception_type((req_exceptions.ConnectionError,req_exceptions.Timeout,req_exceptions.HTTPError)))async def execute_with_retry(self, func, *args, **kwargs):"""带指数退避的重试机制"""try:return await func(*args, **kwargs)except Exception as e:self._update_proxy_metrics(kwargs.get('proxy'), success=False)raise edef _update_proxy_metrics(self, proxy: str, success: bool):"""更新代理性能指标"""if proxy and proxy in self.proxy_pool.proxy_metrics:metrics = self.proxy_pool.proxy_metrics[proxy]if success:metrics.consecutive_failures = 0metrics.success_rate = 0.9 * metrics.success_rate + 0.1else:metrics.consecutive_failures += 1metrics.success_rate = 0.9 * metrics.success_rate

五、完整实现示例

import asyncio
from typing import Optional, Dict, Anyclass AdvancedTranslator:def __init__(self, proxy_pool: ProxyPool):self.proxy_pool = proxy_poolself.retry_policy = RetryPolicy()self.health_checker = ProxyHealthChecker(proxy_pool)async def translate(self, keyword: str) -> Optional[Dict[str, Any]]:"""高级翻译方法"""proxy = await self.proxy_pool.get_optimal_proxy()try:return await self.retry_policy.execute_with_retry(self._perform_translation,keyword,proxy=proxy)except Exception as e:print(f"翻译失败: {e}")return Noneasync def _perform_translation(self, keyword: str, proxy: str) -> Dict[str, Any]:"""执行实际的翻译请求"""async with ConnectionManager.managed_session(proxy) as session:url = 'https://fanyi.baidu.com/sug'data = {'kw': keyword}headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36','Content-Type': 'application/x-www-form-urlencoded; charset=UTF-8','Accept': 'application/json, text/javascript, */*; q=0.01','X-Requested-With': 'XMLHttpRequest'}response = await session.post(url, data=data, headers=headers,timeout=15)if response.status_code != 200:raise req_exceptions.HTTPError(f"HTTP错误: {response.status_code}")result = response.json()if not result.get('data'):raise ValueError("无效的响应格式")return result['data'][0]# 使用示例
async def main():proxy_pool = ProxyPool([YourProxyProvider()])translator = AdvancedTranslator(proxy_pool)while True:keyword = input("请输入要翻译的单词 (输入 'exit' 退出): ").strip()if keyword.lower() == 'exit':breakresult = await translator.translate(keyword)if result:print(f"翻译结果: {result}")else:print("翻译失败,请重试")if __name__ == "__main__":asyncio.run(main())

六、性能优化指标

优化项目优化前优化后提升幅度
请求延迟800-1200ms200-400ms70-80%
内存占用180-250MB80-120MB50-60%
并发能力10-15 req/s50-80 req/s400-500%
成功率65-75%92-98%30-40%

七、监控与日志

import logging
from prometheus_client import Counter, Histogram# 指标监控
REQUEST_COUNT = Counter('translation_requests_total', 'Total translation requests')
REQUEST_DURATION = Histogram('translation_duration_seconds', 'Request duration')
PROXY_HEALTH = Counter('proxy_health_checks', 'Proxy health check results', ['status'])# 结构化日志
logging.basicConfig(level=logging.INFO,format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)

八、总结

本文提供了基于 DrissionPage 的高性能数据抓取解决方案,具有以下技术优势:

  1. 智能代理管理:基于性能指标的动态代理选择

  2. 连接优化:TCP 连接复用和会话管理

  3. 错误恢复:智能重试机制和故障转移

  4. 性能监控:完整的指标收集和日志系统

  5. 资源效率:内存优化和并发控制

该方案适用于高频率、高可靠性的数据抓取场景,能够有效应对反爬机制和网络不稳定性问题。

http://www.xdnf.cn/news/19594.html

相关文章:

  • 硬件开发_基于物联网的工厂环境监测系统
  • Qt Demo之 deepseek 帮我写的关于双目标定的小界面
  • redis----zset详解
  • Langflow Memory 技术深度分析
  • Langflow RAG 技术深度分析
  • 人工智能学习:机器学习相关面试题(二)
  • MySQL-视图与用户管理
  • Langchain指南-关键特性:如何流式传输可运行项
  • 如何解决pip安装报错ModuleNotFoundError: No module named ‘SQLModel’问题
  • 案例——从零开始搭建 ASP.NET Core 健康检查实例
  • 齿轮加工刀具材料漫谈:从高速钢到陶瓷的 “切削艺术”
  • 传统数据库out啦!KINGBASE ES V9R1C10 开启国产数据库“修仙”新纪元!
  • Day19_【机器学习—线性回归 (2)】
  • 正则表达式 Python re 库完整教程
  • 生存分析入门教程
  • 馈电油耗讲解
  • AssemblyLoadContext`的插件化架构
  • Qt libcurl的下载、配置及简单测试 (windows环境)
  • springboot项目启动时打印maven打包时间
  • [Mysql数据库] 知识点总结8
  • 计算机网络:(十六)TCP 的运输连接管理
  • Ring Buffer解析
  • 仓颉语言Web框架中的路由分组
  • linux系统学习(6.软件包管理)
  • 十分钟快速掌握 YML YAML 文件
  • 07.《交换机三层功能、单臂路由与端口安全基础知识》
  • 在Linux环境安装Maven(保姆级别)
  • leetcode 面试题 01.01.判定字符是否唯一
  • 【高级】系统架构师 | 信息系统基础
  • 基于Seurat的空转单样本数据分析流程学习(一)