当前位置: 首页 > backend >正文

【文献分享】Modelling the species-area提供数据和代码

在这里插入图片描述

文章目录

    • 介绍
    • 代码
    • 参考

介绍

通过以递增规模的嵌套方式对不同区域内的物种数量进行计数而得出的嵌套物种 - 面积关系呈现出稳健且反复出现的定性和定量模式。当以双对数坐标系绘制时,它呈现出三个阶段:在小区域内的物种数量快速增长,在中间规模时增长速度较慢,在大区域时增长速度加快。尽管这一模式意义重大,但其理论基础仍不完全清楚。在此,我们利用极值理论为物种 - 面积关系构建了一个理论模型,并表明物种 - 面积关系是每个个体物种到起始采样焦点的最小距离分布的混合体。我们研究的一个关键见解是,每个阶段是由物种的地理分布(即它们的分布范围)相对于焦点点所决定的,这使我们能够开发出一个用于估算相变时物种数量的公式。我们通过将不同大陆和类群的实证物种 - 面积关系与使用全球生物多样性信息设施数据的预测进行比较来测试我们的方法。尽管 SAR 反映了组成物种的潜在生物学属性,但我们的解读和对极值理论的应用是具有普遍性的,并且能够广泛适用于具有类似空间特征的系统。

The nested species-area relationship, obtained by counting species in increasingly larger areas in a nested fashion, exhibits robust and recurring qualitative and quantitative patterns. When plotted in double logarithmic scales it shows three phases: rapid species increase at small areas, slower growth at intermediate scales, and faster rise at large scales. Despite its significance, the theoretical foundations of this pattern remain incompletely understood. Here, we develop a theory for the species-area relationship using extreme value theory, and show that the species-area relationship is a mixture of the distributions of minimum distances to a starting sampling focal point for each individual species. A key insight of our study is that each phase is determined by the geographical distributions of the species, i.e., their ranges, relative to the focal point, enabling us to develop a formula for estimating the number of species at phase transitions. We test our approach by comparing empirical species-area relationships for different continents and taxa with our predictions using Global Biodiversity Information Facility data. Although a SAR reflects the underlying biological attributes of the constituent species, our interpretations and use of the extreme value theory are general and can be widely applicable to systems with similar spatial features.

代码

https://zenodo.org/records/15269150
在这里插入图片描述

### Borda-de-Água et al. Extreme value theory explains the species-area relationship### Created 17 May 2024, Luís Borda-de-Água# Figure 1# functions:draw.circle <- function(R, lty, col = "black") {x <- seq(0.0, R, R / 1000)y <- sqrt(R^2 - x^2)lines(x, y, lty = lty, col = col)lines(x, -y, lty = lty, col = col)lines(-x, y, lty = lty, col = col)lines(-x, -y, lty = lty, col = col)
}###open_graphics_window <- function(width = 9, height = 5) {if (.Platform$OS.type == "windows") { # Windowswindows(width = width, height = height)} else if (Sys.info()["sysname"] == "Darwin") { # Mac OSquartz(width = width, height = height)} else { # Assume Linux or Unix-likex11(width = width, height = height)}
}###plot.spp <- function(n, xmin, xmax, ymin, ymax, pch = 1, lty = 1) {x <- c(0.171891397, 0.111932677, 0.726411596, 0.8415692, 0.699219711, 0.454846982, 0.701518082, 0.562159697, 0.140375352,-0.004526590, -0.096394596, 0.169455724, 0.190195198, 0.704353367, 0.656949430, 0.089487327, 0.422342301, 0.060577829, 0.001633336, 0.588484763, 0.894380263, -0.119370967, 0.242476232, -0.006035809, 0.371303542, 0.272964170, 0.676368215, 0.732307641, 0.412740933, 0.593696158, 0.809483482, 0.150050425, 0.590720689, 0.324918679, 0.484301032, 0.416492280, 0.349924469, 0.527049762, -0.018190031, 0.295000653, 0.137009672, 0.893465236, 0.310720760, 0.208095286, 0.935758810, 0.326973883, 0.484379979, 0.314959719, -0.150431576, 0.152422304)y <- c(0.34482773, -0.16853769, 0.22593770, 0.4901067, 0.29633381, 0.49101054, 0.40671198, 0.54064082, 0.50588536, 0.81729414,0.09584226, 0.06461097, 0.68209353, 0.27152434, 0.46673673, 0.60441876, 0.46256030, 0.43296469, 0.87285586, 0.65784141, 0.05888994, 0.15938462, 0.64358169, 0.29009324, 0.44836678, -0.01434021, 0.45488172, 0.22203386, 0.45848244, 0.06036704, 0.24828992, 0.68929501, -0.04065262, 0.30841310, 0.24062768, 0.35878524, 0.14420193, 0.65942293, 0.51264159, -0.05801282, 0.69791648, -0.13046757, 0.50938987, 0.18340530, -0.11876154, 0.01870023, 0.10531118, 0.44275108, -0.16275379, 0.07577006)x <- x - 0.1y <- y - 0.1r <- sqrt(x^2 + y^2)x <- x[r < .975]y <- y[r < .975]r <- r[r < .975]x <- x[r > 0.1]y <- y[r > 0.1]r <- r[r > 0.1]pos.min <- which(r == min(r))pos.max <- which(r == max(r))par(mar = c(0, 0, 0, 0)) # changes the margins' sizeplot(x, y, xlim = c(-1, 1), ylim = c(-1, 1), xlab = "", ylab = "", xaxt = "n", yaxt = "n", pch = 20, cex = 3, axes = F)points(0, 0, pch = 3)arrows(0, 0, x[pos.min], y[pos.min], length = 0.1, col = "red")rmin <- min(r)draw.circle(rmin, 1)# Now add the second speciesx <- c(-0.3275178, -0.3310398, -0.7078598, -0.3154288, -0.3139587, -0.6843294, -0.3420654, -0.5723965, -0.6549125, -0.5649686, -0.2759476, -0.6720087,-0.4671133, -0.2874343, -0.6500376, -0.2593391, -0.4963501, -0.6639542, -0.5829321, -0.2589675, -0.4058235, -0.5388422, -0.3621775, -0.3898895,-0.6224721)y <- c(0.4258752, 0.4943471, 0.4981802, 0.5200116, 0.4178217, 0.6766097, 0.5221701, 0.4656546, 0.3155398, 0.5527994, 0.6427094, 0.3040067, 0.4554200,0.4050244, 0.5598147, 0.3144913, 0.5320593, 0.5753792, 0.5099927, 0.4643576, 0.4508025, 0.5445848, 0.7018757, 0.7405155, 0.4053569)points(x, y, cex = 2.5) # , pch=5)r <- sqrt(x^2 + y^2)pos.min <- which(r == min(r))pos.max <- which(r == max(r))arrows(0, 0, x[pos.min], y[pos.min], length = 0.1, col = "red")rmin <- min(r)draw.circle(rmin, 1)rmax <- max(r)draw.circle(rmax + 0.05, 2)
}###figure.1 <- function() {open_graphics_window(height = 6, width = 6)par(pty = "s")plot.spp(70, -.2, 1, -.2, 1, pch = 20, lty = 1)
}figure.1()

在这里插入图片描述

参考

  • Modelling the species-area relationship using extreme value theory
http://www.xdnf.cn/news/3276.html

相关文章:

  • 技术研究 | 推荐系统训练后多分类属性遗忘:双组分损失优化与效用空间正则设计
  • GitHub修炼法则:第一次提交代码教学(Liunx系统)
  • Redis Info 性能指标描述
  • AIGC 大模型微调实战:中小企业如何用自有数据训练专属 AI 模型?
  • TCP三次握手、四次挥手+多线程并发处理
  • 昆仑万维:AI短剧出海布局,中型公司如何突破AI商业化?
  • 可视化图解算法:判断是否完全二叉树
  • PH热榜 | 2025-04-30
  • 如何使用C语言手搓斐波那契数列?
  • 如何设计一个100w QPS高并发抢券系统
  • 海外社交软件技术深潜:实时互动系统与边缘计算的极限优化
  • 借助电商 API 接口实现电商平台商品数据分析的详细步骤分享
  • MCP 服务器搭建【sse 类型】实现上市公司年报查询总结, 127.0.0.1:8000/sse直接配置配合 Cherry Studio使用简单
  • 徐州旅行体验分享:从扬州出发的 24 小时碳水之旅
  • Wireshark使用教程
  • NAMUR NE 43是什么标准?
  • Windows 匿名管道通信
  • 自尊量表(SES)在线测试:探索你的自我价值认知
  • AI智能体 | 使用Coze制作提取单条抖音文案并二创
  • 百家号等新媒体私信入口是否可以聚合到企业微信的客服,如何实现
  • Nginx — http、server、location模块下配置相同策略优先级问题
  • 【AI提示词】二八法则专家
  • 【今日探针卡行业分析】2025年4月30日
  • 在Electron中爬取CSDN首页的文章信息
  • 【神经网络与深度学习】探索全连接网络如何学习数据的复杂模式,提取高层次特征
  • 无水印短视频素材下载网站有哪些?十个高清无水印视频素材网站分享
  • vue2 el-element中el-select选中值,数据已经改变但选择框中不显示值,需要其他输入框输入值才显示这个选择框才会显示刚才选中的值
  • 【自然语言处理与大模型】大模型意图识别实操
  • 【MCP Node.js SDK 全栈进阶指南】高级篇(6):MCP服务大规模部署方案
  • 分享5款让电脑更方便更有趣的软件