远程深度学习新环境配置流程
✅ 远程深度学习新环境配置流程
文章目录
- ✅ 远程深度学习新环境配置流程
- 1. 安装 Miniconda
- 2. 配置国内源
- pip 换源
- conda 换源
- 3. 创建 Conda 环境
- 4. 安装 Jupyter Lab
- 5. 配置远程访问
- 6. 设置密码(推荐)
- 7. pip 包定制安装路径
- 8. 启动 Jupyter Lab
1. 安装 Miniconda
前往 Miniconda官网 下载并安装适合你系统的 Miniconda 版本。
2. 配置国内源
pip 换源
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple
conda 换源
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/pro
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2
3. 创建 Conda 环境
conda create -n jupyterlab python=3.13 -y
conda activate jupyterlab
4. 安装 Jupyter Lab
pip install jupyterlab
jupyter-lab --generate-config
5. 配置远程访问
修改 ~/.jupyter/jupyter_lab_config.py
文件,加入:
c.ServerApp.ip = '0.0.0.0'
c.ServerApp.open_browser = False
c.ServerApp.port = 8899
c.ServerApp.allow_remote_access = True
6. 设置密码(推荐)
from jupyter_server.auth import passwd; print(passwd())
将生成的 hash 写入配置文件:
c.ServerApp.password = 'argon2:...'
7. pip 包定制安装路径
#!/bin/bashPYTHON_VERSION=3.13
ENV_NAME=jupyterlab
CUSTOM_PATH="$HOME/miniconda3/python_packages/python${PYTHON_VERSION}"
SITE_PACKAGES_PATH="$HOME/miniconda3/envs/${ENV_NAME}/lib/python${PYTHON_VERSION}/site-packages"
PIP_CONF_PATH="$HOME/miniconda3/envs/${ENV_NAME}/.pip/pip.conf"
PTH_FILE="${SITE_PACKAGES_PATH}/custom_path.pth"mkdir -p "$(dirname "$PIP_CONF_PATH")"
echo "[global]" > "$PIP_CONF_PATH"
echo "target = ${CUSTOM_PATH}" >> "$PIP_CONF_PATH"mkdir -p "$CUSTOM_PATH"
mkdir -p "$SITE_PACKAGES_PATH"
echo "$CUSTOM_PATH" > "$PTH_FILE"python${PYTHON_VERSION} -m pip install requests
python${PYTHON_VERSION} -c "import requests; print('✅ 成功导入 requests:', requests.__version__)"
8. 启动 Jupyter Lab
jupyter lab
然后访问 http://<服务器IP>:8899
。