当前位置: 首页 > ops >正文

Spark处理过程-转换算子

RDD的处理过程

Spark使用Scala语言实现了RDD的API,程序开发者可以通过调用API对RDD进行操作处理。RDD的处理过程如图所示;

RDD经过一系列的“转换”操作,每一次转换都会产生不同的RDD,以供给下一次“转换”操作使用,直到最后一个RDD经过“行动”操作才会真正被计算处理。

这里有两点注意:

延迟。RDD中所有的转换都是延迟的,它们并不会直接计算结果。相反,他们只是记住这些应用到基础数据集上的转换动作。只有当发生要求返回结果给driver的动作时,这些转换才会真正运行。

血缘关系。一个RDD运算之后,会产生新的RDD。

转换算子

转换算子用于对 RDD 进行转换操作,生成一个新的 RDD。转换操作是惰性的,即当调用转换算子时,Spark 并不会立即执行计算,而是记录下操作步骤,直到遇到行动算子时才会触发实际的计算。

从格式和用法上来看,它就是集合对象的方法。

以下是一些常见的转换算子:

1.map 算子

作用:对 RDD 中的每个元素应用给定的函数 f,将每个元素转换为另一个元素,最终返回一个新的 RDD。这个函数 f 接收一个输入类型为 T 的元素,返回一个类型为 U 的元素。

格式:def map[U: ClassTag](f: T => U): RDD[U]

import org.apache.spark.{SparkConf, SparkContext}
object MapExample {def main(args: Array[String]): Unit = {val conf = new SparkConf().setAppName("MapExample").setMaster("local[*]")val sc = new SparkContext(conf)val rdd = sc.parallelize(Seq(1, 2, 3, 4))val newRdd = rdd.map(x => x * 2)newRdd.collect().foreach(println)sc.stop()}
}
2.filter 算子

作用:筛选出 RDD 中满足函数 f 条件(即 f 函数返回 true)的元素,返回一个新的 RDD,新 RDD 中的元素类型与原 RDD 相同。

格式:def filter(f: T => Boolean): RDD[T]

import org.apache.spark.{SparkConf, SparkContext}
object FilterExample {def main(args: Array[String]): Unit = {val conf = new SparkConf().setAppName("FilterExample").setMaster("local[*]")val sc = new SparkContext(conf)val rdd = sc.parallelize(Seq(1, 2, 3, 4))val newRdd = rdd.filter(x => x % 2 == 0)newRdd.collect().foreach(println)sc.stop()
}}
3.flatMap算子

作用:对 RDD 中的每个元素应用函数 f,函数 f 返回一个可遍历的集合,然后将这些集合中的元素扁平化合并成一个新的 RDD。

格式:def flatMap[U: ClassTag](f: T => TraversableOnce[U]): RDD[U]

import org.apache.spark.{SparkConf, SparkContext}
object FlatMapExample {def main(args: Array[String]): Unit = {val conf = new SparkConf().setAppName("FlatMapExample").setMaster("local[*]")val sc = new SparkContext(conf)val rdd = sc.parallelize(Seq("hello world", "spark is great"))val newRdd = rdd.flatMap(x => x.split(" "))newRdd.collect().foreach(println)sc.stop()}}
4.reduceByKey 算子

reduceByKey 是 Spark 中用于处理键值对(Key - Value)类型 RDD 的一个重要转换算子。它的核心作用是对具有相同键的所有值进行聚合操作,通过用户提供的聚合函数将这些值合并成一个结果,从而实现数据的归约和统计。例如统计每个键出现的次数、计算每个键对应值的总和、平均值等。

格式

def reduceByKey(func: (V, V) => V, numPartitions: Int): RDD[(K, V)]

参数说明:

func: (V, V) => V:这是一个二元函数,用于定义如何对相同键的值进行聚合。函数接收两个类型为 V 的值,返回一个类型为 V 的结果。例如,若要对相同键的值进行求和,func 可以是 (x, y) => x + y。

numPartitions: Int(可选):指定结果 RDD 的分区数。如果不提供该参数,将使用默认的分区数。

以下是一个使用 reduceByKey 计算每个单词出现次数的示例:

import org.apache.spark.{SparkConf, SparkContext}
object ReduceByKeyExample {def main(args: Array[String]): Unit = {// 创建 SparkConf 对象val conf = new SparkConf().setAppName("ReduceByKeyExample").setMaster("local[*]")// 创建 SparkContext 对象val sc = new SparkContext(conf)// 创建一个包含单词的 RDDval words = sc.parallelize(List("apple", "banana", "apple", "cherry", "banana", "apple"))// 将每个单词映射为 (单词, 1) 的键值对val wordPairs = words.map(word => (word, 1))// 使用 reduceByKey 计算每个单词的出现次数val wordCounts = wordPairs.reduceByKey(_ + _)// 输出结果wordCounts.collect().foreach(println)// 停止 SparkContextsc.stop()}
}

http://www.xdnf.cn/news/5701.html

相关文章:

  • K8s 图形界面管理kubesphere
  • 遨游5G-A防爆手机:赋能工业通信更快、更安全
  • SAM论文学习
  • LVGL(lv_led LED灯控件)
  • 【ROS2】通信部署概述(以话题(Topic)通信为例)
  • The 2024 Sichuan Provincial Collegiate Programming Contest部分题解(L,H,E,B,I)
  • vue H5解决安卓手机软键盘弹出,页面高度被顶起
  • 连接词化归律详解
  • Linux系统管理与编程19:自动部署dns
  • 十二、操作符重载
  • 多媒体预研
  • 基于STM32、HAL库的BME680气压传感器 驱动程序设计
  • 如何找正常运行虚拟机
  • 【Kubernetes】初识基础理论(第一篇)
  • OSCP - Hack The Box - Sau
  • 【面试真题】王者荣耀亿级排行榜,如何设计?
  • 项目售后服务承诺书,软件售后服务方案,软件安装文档,操作文档,维护文档(Word原件)
  • MySQL性能调优探秘:我的实战笔记 (下篇:深入内核、锁与监控)
  • java反序列化commons-collections链1
  • 如何使用 WMIC 命令在 Windows 11 或 10 上卸载软件
  • 每周靶点分享:CD20、GIPR及文献分享
  • el-table滚动条,都悬浮在页面的底层显示,表格吸底滚动条效果
  • bootstrap自助(抽样)法
  • 机器学习实战:归一化与标准化的选择指南
  • Spring Boot 参数验证
  • 【TTS学习笔记】:语音合成领域基本术语
  • 关系型数据库和非关系型数据库
  • Redis数据类型
  • 结合 GWAS 和 TWAS 鉴定玉米籽粒中生育色醇水平的候选致病基因
  • Java Spring Boot项目目录规范示例