当前位置: 首页 > news >正文

pocketflow库实现guardrail

目录

    • 代码
    • 代码解释
      • 1. 系统架构
      • 2. 核心组件详解
        • 2.1 LLM调用函数
        • 2.2 UserInputNode(用户输入节点)
        • 2.3 GuardrailNode(安全防护节点)
        • 2.4 LLMNode(LLM处理节点)
      • 3. 流程控制机制
    • 示例运行

代码

from pocketflow import Node, Flowfrom openai import OpenAIdef call_llm(messages):client = OpenAI(api_key = "your api key",base_url="https://dashscope.aliyuncs.com/compatible-mode/v1")response = client.chat.completions.create(model="qwen-turbo",messages=messages,temperature=0.7)return response.choices[0].message.contentclass UserInputNode(Node):def prep(self, shared):# Initialize messages if this is the first runif "messages" not in shared:shared["messages"] = []print("Welcome to the Travel Advisor Chat! Type 'exit' to end the conversation.")return Nonedef exec(self, _):# Get user inputuser_input = input("\nYou: ")return user_inputdef post(self, shared, prep_res, exec_res):user_input = exec_res# Check if user wants to exitif user_input and user_input.lower() == 'exit':print("\nGoodbye! Safe travels!")return None  # End the conversation# Store user input in sharedshared["user_input"] = user_input# Move to guardrail validationreturn "validate"class GuardrailNode(Node):def prep(self, shared):# Get the user input from shared datauser_input = shared.get("user_input", "")return user_inputdef exec(self, user_input):# Basic validation checksif not user_input or user_input.strip() == "":return False, "Your query is empty. Please provide a travel-related question."if len(user_input.strip()) < 3:return False, "Your query is too short. Please provide more details about your travel question."# LLM-based validation for travel topicsprompt = f"""
Evaluate if the following user query is related to travel advice, destinations, planning, or other travel topics.
The chat should ONLY answer travel-related questions and reject any off-topic, harmful, or inappropriate queries.
User query: {user_input}
Return your evaluation in YAML format:
```yaml
valid: true/false
reason: [Explain why the query is valid or invalid]
```"""# Call LLM with the validation promptmessages = [{"role": "user", "content": prompt}]response = call_llm(messages)# Extract YAML contentyaml_content = response.split("```yaml")[1].split("```")[0].strip() if "```yaml" in response else responseimport yamlresult = yaml.safe_load(yaml_content)assert result is not None, "Error: Invalid YAML format"assert "valid" in result and "reason" in result, "Error: Invalid YAML format"is_valid = result.get("valid", False)reason = result.get("reason", "Missing reason in YAML response")return is_valid, reasondef post(self, shared, prep_res, exec_res):is_valid, message = exec_resif not is_valid:# Display error message to userprint(f"\nTravel Advisor: {message}")# Skip LLM call and go back to user inputreturn "retry"# Valid input, add to message historyshared["messages"].append({"role": "user", "content": shared["user_input"]})# Proceed to LLM processingreturn "process"class LLMNode(Node):def prep(self, shared):# Add system message if not presentif not any(msg.get("role") == "system" for msg in shared["messages"]):shared["messages"].insert(0, {"role": "system", "content": "You are a helpful travel advisor that provides information about destinations, travel planning, accommodations, transportation, activities, and other travel-related topics. Only respond to travel-related queries and keep responses informative and friendly. Your response are concise in 100 words."})# Return all messages for the LLMreturn shared["messages"]def exec(self, messages):# Call LLM with the entire conversation historyresponse = call_llm(messages)return responsedef post(self, shared, prep_res, exec_res):# Print the assistant's responseprint(f"\nTravel Advisor: {exec_res}")# Add assistant message to historyshared["messages"].append({"role": "assistant", "content": exec_res})# Loop back to continue the conversationreturn "continue"# Create the flow with nodes and connections
user_input_node = UserInputNode()
guardrail_node = GuardrailNode()
llm_node = LLMNode()# Create flow connections
user_input_node - "validate" >> guardrail_node
guardrail_node - "retry" >> user_input_node  # Loop back if input is invalid
guardrail_node - "process" >> llm_node
llm_node - "continue" >> user_input_node     # Continue conversationflow = Flow(start=user_input_node)shared = {}
flow.run(shared)

代码解释

这个示例展示了如何使用PocketFlow框架实现一个带有guardrail(安全防护)机制的旅行顾问聊天机器人。整个系统由三个核心节点组成,通过条件流控制实现智能对话管理。

1. 系统架构

用户输入 → 安全验证 → LLM处理 → 用户输入↑         ↓←─────────┘(验证失败时重试)

2. 核心组件详解

2.1 LLM调用函数
def call_llm(messages):client = OpenAI(api_key = "your api key",base_url="https://dashscope.aliyuncs.com/compatible-mode/v1")
  • 使用阿里云DashScope的兼容OpenAI API接口
  • 配置qwen-turbo模型,temperature=0.7保证回答的创造性
2.2 UserInputNode(用户输入节点)
class UserInputNode(Node):def prep(self, shared):if "messages" not in shared:shared["messages"] = []

功能

  • prep:初始化对话历史,首次运行时显示欢迎信息
  • exec:获取用户输入
  • post:检查退出条件,将输入存储到共享状态,返回"validate"进入验证流程
2.3 GuardrailNode(安全防护节点)

这是系统的核心安全组件,实现多层验证:

基础验证

if not user_input or user_input.strip() == "":return False, "Your query is empty..."
if len(user_input.strip()) < 3:return False, "Your query is too short..."

LLM智能验证

prompt = f"""
Evaluate if the following user query is related to travel advice...
Return your evaluation in YAML format:
```yaml
valid: true/false
reason: [Explain why the query is valid or invalid]
```"""

验证流程

  1. 基础格式检查(空输入、长度)
  2. 使用LLM判断是否为旅行相关话题
  3. 解析YAML格式的验证结果
  4. 根据验证结果决定流向:
    • 失败:返回"retry"重新输入
    • 成功:返回"process"进入LLM处理
2.4 LLMNode(LLM处理节点)
def prep(self, shared):if not any(msg.get("role") == "system" for msg in shared["messages"]):shared["messages"].insert(0, {"role": "system", "content": "You are a helpful travel advisor..."})

功能

  • prep:确保系统提示词存在,定义AI助手角色
  • exec:调用LLM生成回答
  • post:显示回答,更新对话历史,返回"continue"继续对话

3. 流程控制机制

user_input_node - "validate" >> guardrail_node
guardrail_node - "retry" >> user_input_node
guardrail_node - "process" >> llm_node
llm_node - "continue" >> user_input_node

流程说明

  1. 正常流程:用户输入 → 验证通过 → LLM处理 → 继续对话
  2. 安全拦截:用户输入 → 验证失败 → 重新输入
  3. 退出机制:用户输入"exit" → 程序结束

示例运行

在这里插入图片描述

http://www.xdnf.cn/news/953731.html

相关文章:

  • Nginx server_name 配置说明
  • Qt插件化编程的全面解析(QPluginLoader)
  • 微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据
  • 云防火墙(安全组)配置指南:从入门到精通端口开放 (2025)
  • OCR、图像分类与目标检测
  • 雷达RCS计算中的旋转矩阵
  • 在Ubuntu上利用loongarch64交叉编译工具编译opencv4.4.0
  • 【排错】ollama报错unable to load model
  • 【知识点】第8章:程序设计方法论
  • CKA考试知识点分享(6)---PriorityClass
  • 自动化测试工具playwright中文文档-------19.评估JavaScript
  • 初版BL程序一些细节整理(碎碎念)
  • 相机Camera日志实例分析之二:相机Camx【专业模式开启直方图拍照】单帧流程日志详解
  • 无线耳机存储痛点解决方案-64Mb Quad-SPI Pseudo-SRAM CS56404L
  • 向量几何的二元性:叉乘模长与内积投影的深层联系
  • 安宝特方案丨从依赖经验到数据驱动:AR套件重构特种装备装配与质检全流程
  • SQL注入篇-sqlmap的配置和使用
  • 分布式计算框架学习笔记
  • 我的世界Java版1.21.4的Fabric模组开发教程(十二)方块状态
  • UE5 文本框自动换行
  • 苍穹外卖--缓存菜品
  • 用docker来安装部署freeswitch记录
  • “一张网,万般用”——聊聊网络虚拟化到底怎么实现的
  • 大话软工笔记—记录形式
  • React从基础入门到高级实战:React 实战项目 - 项目五:微前端与模块化架构
  • XCTF-web-easyupload
  • Python 实现 Web 静态服务器(HTTP 协议)
  • 语义化商品详情API:AI赋能下一代电商平台数据接口的创新应用
  • 【Dv3Admin】系统视图菜单管理API文件解析
  • ArcGIS Pro 3.4 二次开发 - 栅格