矩阵分解相关知识点总结(三)
书接上回,CSDN发不了长文,只能这样分开发了😔
完成矩阵的QR分解有三种常用的方法:Schmidt正交化方法,Givens变换方法和Householder变换方法。下面通过一个具体实例,将矩阵 A = [ 1 2 2 2 1 2 1 2 1 ] A=\begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 1 & 2 & 1 \end{bmatrix} A= 121212221 分别用上述三种方法进行QR分解。
Schmidt正交化方法:
令 a 1 = ( 1 , 2 , 1 ) T , a 2 = ( 2 , 1 , 2 ) T , a 3 = ( 2 , 2 , 1 ) T \bm{a}_1=(1,2,1)^{\rm T},\,\bm{a}_2=(2,1,2)^{\rm T},\,\bm{a}_3=(2,2,1)^{\rm T} a1=(1,2,1)T,a2=(2,1,2)T,a3=(2,2,1)T,将其Schmidt正交化可得:
b 1 = a 1 = ( 1 , 2 , 1 ) T b 2 = a 2 − ( a 2 , b 1 ) ( b 1 , b 1 ) b 1 = a 2 − b 1 = ( 1 , − 1 , 1 ) T b 3 = a 3 − ( a 3 , b 1 ) ( b 1 , b 1 ) b 1 − ( a 3 , b 2 ) ( b 2 , b 2 ) b 2 = a 3 − 1 3 b 2 − 7 6 b 1 = ( 1 2 , 0 , − 1 2 ) T \begin{array}{l}\bm{b}_1=\bm{a}_1=(1,2,1)^{\rm T}\\[2ex] \bm{b}_2=\bm{a}_2-\cfrac{(\bm{a}_2,\bm{b}_1)}{(\bm{b}_1,\bm{b}_1)}\bm{b}_1=\bm{a}_2-\bm{b}_1=(1,-1,1)^{\rm T}\\[2ex] \bm{b}_3=\bm{a}_3-\cfrac{(\bm{a}_3,\bm{b}_1)}{(\bm{b}_1,\bm{b}_1)}\bm{b}_1-\cfrac{(\bm{a}_3,\bm{b}_2)}{(\bm{b}_2,\bm{b}_2)}\bm{b}_2=\bm{a}_3-\cfrac{1}{3}\bm{b}_2-\cfrac{7}{6}\bm{b}_1=(\cfrac{1}{2},0,-\cfrac{1}{2})^{\rm T}\end{array} b1=a1=(1,2,1)Tb2=a2−(b1,b1)(a2,b1)b1=a2−b1=(1,−1,1)Tb3=a3−(b1,b1)(a3,b1)b1−(b2,b2)(a3,b2)b2=a3−31b2−67b1=(21,0,−21)T
进而有:
( a 1 , a 2 , a 3 ) = ( b 1 , b 2 , b 3 ) ⋅ C = ( b 1 , b 2 , b 3 ) [ 1 1 7 6 0 1 1 3 0 0 1 ] (\bm{a}_1,\bm{a}_2,\bm{a}_3)= (\bm{b}_1,\bm{b}_2,\bm{b}_3)\cdot C=(\bm{b}_1,\bm{b}_2,\bm{b}_3) \begin{bmatrix} 1 & 1 & \cfrac{7}{6} \\[2ex] 0 & 1 & \cfrac{1}{3} \\[2ex] 0 & 0 & 1 \end{bmatrix} (a1,a2,a3)=(b1,b2,b3)⋅C=(b1,b2,b3) 10011067311
取:
q 1 = 1 ∣ b 1 ∣ ∣ b 1 ∣ = 1 6 ( 1 , 2 , 1 ) T q 2 = 1 ∣ b 2 ∣ ∣ b 2 ∣ = 1 3 ( 1 , − 1 , 1 ) T q 3 = 1 ∣ b 3 ∣ ∣ b 3 ∣ = 1 2 ( 1 , 0 , − 1 ) T \begin{array}{l}\bm{q}_1=\cfrac{1}{|\bm{b}_1|}|\bm{b}_1|=\cfrac{1}{\sqrt{6}}(1,2,1)^{\rm T}\\[2ex] \bm{q}_2=\cfrac{1}{|\bm{b}_2|}|\bm{b}_2|=\cfrac{1}{\sqrt{3}}(1,-1,1)^{\rm T}\\[2ex] \bm{q}_3=\cfrac{1}{|\bm{b}_3|}|\bm{b}_3|=\cfrac{1}{\sqrt{2}}(1,0,-1)^{\rm T}\end{array} q1=∣b1∣1∣b1∣=61(1,2,1)Tq2=∣b2∣1∣b2∣=31(1,−1,1)Tq3=∣b3∣1∣b3∣=21(1,0,−1)T
令:
Q = ( q 1 , q 2 , q 3 ) = [ 1 6 1 3 1 2 2 6 − 1 3 0 1 6 1 3 − 1 2 ] R = d i a g ( ∣ b 1 ∣ , ∣ b 2 ∣ , ∣ b 3 ∣ ) ⋅ C = [ 6 0 0 0 3 0 0 0 1 2 ] [ 1 1 7 6 0 1 1 3 0 0 1 ] = [ 6 6 7 6 0 3 1 3 0 0 1 2 ] \begin{array}{l} Q=(\bm{q}_1,\bm{q}_2,\bm{q}_3)= \begin{bmatrix} \cfrac{1}{\sqrt{6}} & \cfrac{1}{\sqrt{3}} & \cfrac{1}{\sqrt{2}} \\ \cfrac{2}{\sqrt{6}} & -\cfrac{1}{\sqrt{3}} & 0 \\ \cfrac{1}{\sqrt{6}} & \cfrac{1}{\sqrt{3}} & -\cfrac{1}{\sqrt{2}} \end{bmatrix}\\ R=\rm{diag}(|\bm{b}_1|,|\bm{b}_2|,|\bm{b}_3|)\cdot C= \begin{bmatrix} \sqrt{6} & 0 & 0 \\ 0 & \sqrt{3} & 0 \\ 0 & 0 & \cfrac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} 1 & 1 & \cfrac{7}{6} \\[2ex] 0 & 1 & \cfrac{1}{3} \\[2ex] 0 & 0 & 1 \end{bmatrix}= \begin{bmatrix} \sqrt{6} & \sqrt{6} & \cfrac{7}{\sqrt{6}} \\[2ex] 0 & \sqrt{3} & \cfrac{1}{\sqrt{3}} \\[2ex] 0 & 0 & \cfrac{1}{\sqrt{2}} \end{bmatrix} \end{array} Q=(q1,q2,q3)= 61626131−3131210−21 R=diag(∣b1∣,∣b2∣,∣b3∣)⋅C= 6000300021 10011067311 = 600630673121
则有 A = Q R A=QR A=QR。
Givens变换方法:
第1步,对 A ( 0 ) = A = [ 1 2 2 2 1 2 1 2 1 ] A^{(0)}=A=\left[\begin{array}{c:cc}1 & 2 & 2 \\ 2 & 1 & 2 \\ 1 & 2 & 1 \end{array}\right] A(0)=A= 121212221 的第1列 b ( 1 ) = [ 1 2 1 ] \bm{b}^{(1)}=\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} b(1)= 121 构造旋转矩阵 T 1 T_1 T1,使 T 1 b ( 1 ) = ∣ b ( 1 ) ∣ e 1 T_1\bm{b}^{(1)}=|\bm{b}^{(1)}|\bm{e}_1 T1b(1)=∣b(1)∣e1:
T 1 = T 13 T 12 = [ 5 6 0 1 6 0 1 0 − 1 6 0 5 6 ] [ 1 5 2 5 0 − 2 5 1 5 0 0 0 1 ] = [ 1 6 2 6 1 6 − 2 5 1 5 0 − 1 30 − 2 30 5 6 ] T_1=T_{13}T_{12}=\begin{bmatrix} \cfrac{\sqrt{5}}{\sqrt{6}} & 0 & \cfrac{1}{\sqrt{6}} \\ 0 & 1 & 0 \\ -\cfrac{1}{\sqrt{6}} & 0 & \cfrac{\sqrt{5}}{\sqrt{6}} \end{bmatrix} \begin{bmatrix} \cfrac{1}{\sqrt{5}} & \cfrac{2}{\sqrt{5}} & 0 \\ -\cfrac{2}{\sqrt{5}} & \cfrac{1}{\sqrt{5}} & 0 \\ 0 & 0 & 1 \end{bmatrix} =\begin{bmatrix} \cfrac{1}{\sqrt{6}} & \cfrac{2}{\sqrt{6}} & \cfrac{1}{\sqrt{6}} \\ -\cfrac{2}{\sqrt{5}} & \cfrac{1}{\sqrt{5}} & 0 \\ -\cfrac{1}{\sqrt{30}} & -\cfrac{2}{\sqrt{30}} & \cfrac{\sqrt{5}}{\sqrt{6}} \end{bmatrix} T1=T13T12= 650−6101061065 51−52052510001 = 61−52−3016251−30261065
T 1 b ( 1 ) = [ 1 6 2 6 1 6 − 2 5 1 5 0 − 1 30 − 2 30 5 6 ] [ 1 2 1 ] = [ 6 0 0 ] T_{1}\bm{b}^{(1)}=\begin{bmatrix} \cfrac{1}{\sqrt{6}} & \cfrac{2}{\sqrt{6}} & \cfrac{1}{\sqrt{6}} \\ -\cfrac{2}{\sqrt{5}} & \cfrac{1}{\sqrt{5}} & 0 \\ -\cfrac{1}{\sqrt{30}} & -\cfrac{2}{\sqrt{30}} & \cfrac{\sqrt{5}}{\sqrt{6}} \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}=\begin{bmatrix} \sqrt{6} \\ 0 \\ 0 \end{bmatrix} T1b(1)= 61−52−3016251−30261065 121 = 600
T 1 A ( 0 ) = [ 1 6 2 6 1 6 − 2 5 1 5 0 − 1 30 − 2 30 5 6 ] [ 1 2 2 2 1 2 1 2 1 ] = [ 6 6 7 6 0 − 3 5 − 2 5 0 6 30 − 1 30 ] T_{1}A^{(0)}=\begin{bmatrix} \cfrac{1}{\sqrt{6}} & \cfrac{2}{\sqrt{6}} & \cfrac{1}{\sqrt{6}} \\ -\cfrac{2}{\sqrt{5}} & \cfrac{1}{\sqrt{5}} & 0 \\ -\cfrac{1}{\sqrt{30}} & -\cfrac{2}{\sqrt{30}} & \cfrac{\sqrt{5}}{\sqrt{6}} \end{bmatrix} \begin{bmatrix} 1&2&2 \\ 2&1&2 \\ 1&2&1 \end{bmatrix} =\left[\begin{array}{c:cc} \sqrt{6} & \sqrt{6} & \cfrac{7}{\sqrt{6}} \\\hdashline 0 & -\cfrac{3}{\sqrt{5}} & -\cfrac{2}{\sqrt{5}} \\ 0 & \cfrac{6}{\sqrt{30}} & -\cfrac{1}{\sqrt{30}} \end{array}\right] T1A(0)= 61−52−3016251−30261065 121212221 = 6006−5330667−52−301
第2步,对 A ( 1 ) = [ − 3 5 − 2 5 6 30 − 1 30 ] A^{(1)}=\left[\begin{array}{c:c} -\cfrac{3}{\sqrt{5}} & -\cfrac{2}{\sqrt{5}} \\ \cfrac{6}{\sqrt{30}} & -\cfrac{1}{\sqrt{30}} \end{array}\right] A(1)= −53306−52−301 的第1列 b ( 2 ) = [ − 3 5 6 30 ] \bm{b}^{(2)}=\begin{bmatrix} -\cfrac{3}{\sqrt{5}} \\ \cfrac{6}{\sqrt{30}} \end{bmatrix} b(2)= −53306 构造旋转矩阵 T 2 T_2 T2,使 T 2 b ( 2 ) = ∣ b ( 2 ) ∣ e 1 T_2\bm{b}^{(2)}=|\bm{b}^{(2)}|\bm{e}_1 T2b(2)=∣b(2)∣e1:
T 2 = T 12 = [ − 3 5 2 10 − 2 10 − 3 5 ] T_2=T_{12}=\begin{bmatrix} -\cfrac{\sqrt{3}}{\sqrt{5}} & \cfrac{2}{\sqrt{10}} \\ -\cfrac{2}{\sqrt{10}} & -\cfrac{\sqrt{3}}{\sqrt{5}} \end{bmatrix} T2=T12= −53−102102−53
T 2 b ( 2 ) = [ − 3 5 2 10 − 2 10 − 3 5 ] [ − 3 5 6 30 ] = [ 3 0 ] T_2\bm{b}^{(2)}=\begin{bmatrix} -\cfrac{\sqrt{3}}{\sqrt{5}} & \cfrac{2}{\sqrt{10}} \\ -\cfrac{2}{\sqrt{10}} & -\cfrac{\sqrt{3}}{\sqrt{5}} \end{bmatrix} \begin{bmatrix} -\cfrac{3}{\sqrt{5}} \\ \cfrac{6}{\sqrt{30}} \end{bmatrix} =\begin{bmatrix} {\sqrt{3}} \\ 0 \end{bmatrix} T2b(2)= −53−102102−53 −53306 =[30]
T 2 A ( 1 ) = [ − 3 5 2 10 − 2 10 − 3 5 ] [ − 3 5 − 2 5 6 30 − 1 30 ] = [ 3 1 3 0 1 2 ] T_2A^{(1)}=\begin{bmatrix} -\cfrac{\sqrt{3}}{\sqrt{5}} & \cfrac{2}{\sqrt{10}} \\ -\cfrac{2}{\sqrt{10}} & -\cfrac{\sqrt{3}}{\sqrt{5}} \end{bmatrix} \begin{bmatrix} -\cfrac{3}{\sqrt{5}} & -\cfrac{2}{\sqrt{5}} \\ \cfrac{6}{\sqrt{30}} & -\cfrac{1}{\sqrt{30}} \end{bmatrix} =\begin{bmatrix} {\sqrt{3}} & \cfrac{1}{\sqrt{3}} \\ 0 & \cfrac{1}{\sqrt{2}} \end{bmatrix} T2A(1)= −53−102102−53 −53306−52−301 = 303121
最后,令
T = [ 1 O T O T 2 ] T 1 = [ 1 0 0 0 − 3 5 2 10 0 − 2 10 − 3 5 ] [ 1 6 2 6 1 6 − 2 5 1 5 0 − 1 30 − 2 30 5 6 ] = [ 1 6 2 6 1 6 1 3 − 1 3 1 3 1 2 0 − 1 2 ] T=\begin{bmatrix}1&O^{\text T}\\[2ex]O&T_2\end{bmatrix}T_1 =\begin{bmatrix} 1&0&0\\0&-\cfrac{\sqrt{3}}{\sqrt{5}} & \cfrac{2}{\sqrt{10}} \\ 0&-\cfrac{2}{\sqrt{10}} & -\cfrac{\sqrt{3}}{\sqrt{5}} \end{bmatrix} \begin{bmatrix} \cfrac{1}{\sqrt{6}} & \cfrac{2}{\sqrt{6}} & \cfrac{1}{\sqrt{6}} \\ -\cfrac{2}{\sqrt{5}} & \cfrac{1}{\sqrt{5}} & 0 \\ -\cfrac{1}{\sqrt{30}} & -\cfrac{2}{\sqrt{30}} & \cfrac{\sqrt{5}}{\sqrt{6}} \end{bmatrix} =\begin{bmatrix} \cfrac{1}{\sqrt{6}} & \cfrac{2}{\sqrt{6}} & \cfrac{1}{\sqrt{6}} \\ \cfrac{1}{\sqrt{3}} & -\cfrac{1}{\sqrt{3}} & \cfrac{1}{\sqrt{3}} \\ \cfrac{1}{\sqrt{2}} & 0 & -\cfrac{1}{\sqrt{2}} \end{bmatrix} T=[1OOTT2]T1= 1000−53−1020102−53 61−52−3016251−30261065 = 61312162−3106131−21
Q = T T = = [ 1 6 1 3 1 2 2 6 − 1 3 0 1 6 1 3 − 1 2 ] , R = T A = [ 6 6 7 6 0 3 1 3 0 0 1 2 ] Q=T^{\text T}= =\begin{bmatrix} \cfrac{1}{\sqrt{6}} & \cfrac{1}{\sqrt{3}} & \cfrac{1}{\sqrt{2}} \\ \cfrac{2}{\sqrt{6}} & -\cfrac{1}{\sqrt{3}} & 0 \\ \cfrac{1}{\sqrt{6}} & \cfrac{1}{\sqrt{3}} & -\cfrac{1}{\sqrt{2}} \end{bmatrix},\quad R=TA=\begin{bmatrix} \sqrt{6} & \sqrt{6} & \cfrac{7}{\sqrt{6}} \\ 0 & {\sqrt{3}} & \cfrac{1}{\sqrt{3}} \\ 0 & 0 & \cfrac{1}{\sqrt{2}} \end{bmatrix} Q=TT== 61626131−3131210−21 ,R=TA= 600630673121
则有 A = Q R A=QR A=QR。
Householder变换方法:
第1步,对 A ( 0 ) = A = [ 1 2 2 2 1 2 1 2 1 ] A^{(0)}=A=\left[\begin{array}{c:cc}1 & 2 & 2 \\ 2 & 1 & 2 \\ 1 & 2 & 1 \end{array}\right] A(0)=A= 121212221 的第1列 b ( 1 ) = [ 1 2 1 ] \bm{b}^{(1)}=\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} b(1)= 121 构造Householder矩阵 H 1 H_1 H1,使 H 1 b ( 1 ) = ∣ b ( 1 ) ∣ e 1 H_1\bm{b}^{(1)}=|\bm{b}^{(1)}|\bm{e}_1 H1b(1)=∣b(1)∣e1:
b ( 1 ) − ∣ b ( 1 ) ∣ e 1 = [ 1 2 1 ] − 6 [ 1 0 0 ] = [ 1 − 6 2 1 ] \bm{b}^{(1)}-|\bm{b}^{(1)}|\bm{e}_1=\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}-\sqrt{6}\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}=\begin{bmatrix} 1-\sqrt{6} \\ 2 \\ 1 \end{bmatrix} b(1)−∣b(1)∣e1= 121 −6 100 = 1−621
u = b ( 1 ) − ∣ b ( 1 ) ∣ e 1 ∣ b ( 1 ) − ∣ b ( 1 ) ∣ e 1 ∣ = 1 12 − 2 6 [ 1 − 6 2 1 ] \bm{u}=\cfrac{\bm{b}^{(1)}-|\bm{b}^{(1)}|\bm{e}_1}{|\bm{b}^{(1)}-|\bm{b}^{(1)}|\bm{e}_1|}= \cfrac{1}{\sqrt{12-2\sqrt{6}}}\begin{bmatrix} 1-\sqrt{6} \\ 2 \\ 1 \end{bmatrix} u=∣b(1)−∣b(1)∣e1∣b(1)−∣b(1)∣e1=12−261 1−621
H 1 = I − 2 u u T = [ 1 0 0 0 1 0 0 0 1 ] − 1 6 − 6 [ 1 − 6 2 1 ] [ 1 − 6 2 1 ] = [ 1 6 2 6 1 6 2 6 6 − 2 6 − 6 2 6 − 6 1 6 2 6 − 6 6 − 5 6 − 6 ] H_1=I-2\bm{uu}^{\rm T}=\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}- \cfrac{1}{6-\sqrt{6}}\begin{bmatrix} 1-\sqrt{6} \\ 2 \\ 1 \end{bmatrix}\begin{bmatrix} 1-\sqrt{6} & 2 & 1 \end{bmatrix}= \begin{bmatrix} \cfrac{1}{\sqrt{6}} & \cfrac{2}{\sqrt{6}} & \cfrac{1}{\sqrt{6}} \\ \cfrac{2}{\sqrt{6}} & \cfrac{\sqrt{6}-2}{\sqrt{6}-6} & \cfrac{2}{\sqrt{6}-6} \\ \cfrac{1}{\sqrt{6}} & \cfrac{2}{\sqrt{6}-6} & \cfrac{\sqrt{6}-5}{\sqrt{6}-6} \end{bmatrix} H1=I−2uuT= 100010001 −6−61 1−621 [1−621]= 616261626−66−26−62616−626−66−5
H 1 A ( 0 ) = [ 1 6 2 6 1 6 2 6 6 − 2 6 − 6 2 6 − 6 1 6 2 6 − 6 6 − 5 6 − 6 ] [ 1 2 2 2 1 2 1 2 1 ] = [ 6 6 7 6 0 3 − 6 6 − 1 2 6 0 6 6 − 1 1 6 ] H_1A^{(0)}=\begin{bmatrix} \cfrac{1}{\sqrt{6}} & \cfrac{2}{\sqrt{6}} & \cfrac{1}{\sqrt{6}} \\ \cfrac{2}{\sqrt{6}} & \cfrac{\sqrt{6}-2}{\sqrt{6}-6} & \cfrac{2}{\sqrt{6}-6} \\ \cfrac{1}{\sqrt{6}} & \cfrac{2}{\sqrt{6}-6} & \cfrac{\sqrt{6}-5}{\sqrt{6}-6} \end{bmatrix} \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 1 & 2 & 1 \end{bmatrix}= \left[\begin{array}{c:cc} {\sqrt{6}} & {\sqrt{6}} & \cfrac{7}{\sqrt{6}} \\\hdashline 0 & \cfrac{3-\sqrt{6}}{\sqrt{6}-1} & \cfrac{2}{\sqrt{6}} \\ 0 & \cfrac{\sqrt{6}}{\sqrt{6}-1} & \cfrac{1}{\sqrt{6}} \end{array}\right] H1A(0)= 616261626−66−26−62616−626−66−5 121212221 = 60066−13−66−16676261
第2步,对 A ( 1 ) = [ 3 − 6 6 − 1 2 6 6 6 − 1 1 6 ] A^{(1)}=\left[\begin{array}{c:c} \cfrac{3-\sqrt{6}}{\sqrt{6}-1} & \cfrac{2}{\sqrt{6}} \\ \cfrac{\sqrt{6}}{\sqrt{6}-1} & \cfrac{1}{\sqrt{6}} \end{array}\right] A(1)= 6−13−66−166261 的第1列 b ( 2 ) = [ 3 − 6 6 − 1 6 6 − 1 ] \bm{b}^{(2)}=\begin{bmatrix} \cfrac{3-\sqrt{6}}{\sqrt{6}-1} \\ \cfrac{\sqrt{6}}{\sqrt{6}-1} \end{bmatrix} b(2)= 6−13−66−16 构造Householder矩阵 H 2 H_2 H2,使 H 2 b ( 2 ) = ∣ b ( 2 ) ∣ e 1 H_2\bm{b}^{(2)}=|\bm{b}^{(2)}|\bm{e}_1 H2b(2)=∣b(2)∣e1:
b ( 2 ) − ∣ b ( 2 ) ∣ e 1 = [ 3 − 6 6 − 1 6 6 − 1 ] − 21 − 6 6 6 − 1 [ 1 0 ] = [ 3 − 6 − 21 − 6 6 6 − 1 6 6 − 1 ] = [ x 6 − 1 6 6 − 1 ] \bm{b}^{(2)}-|\bm{b}^{(2)}|\bm{e}_1=\begin{bmatrix} \cfrac{3-\sqrt{6}}{\sqrt{6}-1} \\ \cfrac{\sqrt{6}}{\sqrt{6}-1} \end{bmatrix}- \cfrac{\sqrt{21-6\sqrt{6}}}{\sqrt{6}-1} \begin{bmatrix} 1 \\ 0 \end{bmatrix} =\begin{bmatrix} \cfrac{3-\sqrt{6}-\sqrt{21-6\sqrt{6}}}{\sqrt{6}-1} \\ \cfrac{\sqrt{6}}{\sqrt{6}-1} \end{bmatrix} =\begin{bmatrix} \cfrac{x}{\sqrt{6}-1} \\ \cfrac{\sqrt{6}}{\sqrt{6}-1} \end{bmatrix} b(2)−∣b(2)∣e1= 6−13−66−16 −6−121−66[10]= 6−13−6−21−666−16 = 6−1x6−16
u = b ( 2 ) − ∣ b ( 2 ) ∣ e 1 ∣ b ( 2 ) − ∣ b ( 2 ) ∣ e 1 ∣ = 6 − 1 x 2 + 6 [ x 6 − 1 6 6 − 1 ] = [ x x 2 + 6 6 x 2 + 6 ] \bm{u}=\cfrac{\bm{b}^{(2)}-|\bm{b}^{(2)}|\bm{e}_1}{|\bm{b}^{(2)}-|\bm{b}^{(2)}|\bm{e}_1|}= \cfrac{\sqrt{6}-1}{\sqrt{x^2+6}} \begin{bmatrix} \cfrac{x}{\sqrt{6}-1} \\ \cfrac{\sqrt{6}}{\sqrt{6}-1} \end{bmatrix} =\begin{bmatrix} \cfrac{x}{\sqrt{x^2+6}} \\ \cfrac{\sqrt{6}}{\sqrt{x^2+6}} \end{bmatrix} u=∣b(2)−∣b(2)∣e1∣b(2)−∣b(2)∣e1=x2+66−1 6−1x6−16 = x2+6xx2+66
H 2 = I − 2 u u T = [ 1 0 0 1 ] − 2 [ x x 2 + 6 6 x 2 + 6 ] [ x x 2 + 6 6 x 2 + 6 ] = [ 6 − x 2 x 2 + 6 − 2 6 x x 2 + 6 − 2 6 x x 2 + 6 x 2 − 6 x 2 + 6 ] H_2=I-2\bm{uu}^{\text T}=\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}- 2\begin{bmatrix} \cfrac{x}{\sqrt{x^2+6}} \\ \cfrac{\sqrt{6}}{\sqrt{x^2+6}} \end{bmatrix} \begin{bmatrix} \cfrac{x}{\sqrt{x^2+6}} & \cfrac{\sqrt{6}}{\sqrt{x^2+6}} \end{bmatrix}= \begin{bmatrix} \cfrac{6-x^2}{{x^2+6}} & \cfrac{-2\sqrt{6}x}{{x^2+6}} \\[2ex] \cfrac{-2\sqrt{6}x}{{x^2+6}} & \cfrac{x^2-6}{{x^2+6}} \end{bmatrix} H2=I−2uuT=[1001]−2 x2+6xx2+66 [x2+6xx2+66]= x2+66−x2x2+6−26xx2+6−26xx2+6x2−6
H 2 A ( 1 ) = [ 6 − x 2 x 2 + 6 − 2 6 x x 2 + 6 − 2 6 x x 2 + 6 x 2 − 6 x 2 + 6 ] [ 3 − 6 6 − 1 2 6 6 6 − 1 1 6 ] = [ 3 1 3 0 1 2 ] H_2A^{(1)}=\begin{bmatrix} \cfrac{6-x^2}{{x^2+6}} & \cfrac{-2\sqrt{6}x}{{x^2+6}} \\[2ex] \cfrac{-2\sqrt{6}x}{{x^2+6}} & \cfrac{x^2-6}{{x^2+6}} \end{bmatrix} \begin{bmatrix} \cfrac{3-\sqrt{6}}{\sqrt{6}-1} & \cfrac{2}{\sqrt{6}} \\ \cfrac{\sqrt{6}}{\sqrt{6}-1} & \cfrac{1}{\sqrt{6}} \end{bmatrix} =\begin{bmatrix} {\sqrt{3}} & \cfrac{1}{\sqrt{3}} \\ 0 & \cfrac{1}{\sqrt{2}} \end{bmatrix} H2A(1)= x2+66−x2x2+6−26xx2+6−26xx2+6x2−6 6−13−66−166261 = 303121
最后,令
S = [ 1 O T O H 2 ] H 1 = [ 1 0 0 0 6 − x 2 x 2 + 6 − 2 6 x x 2 + 6 0 − 2 6 x x 2 + 6 x 2 − 6 x 2 + 6 ] [ 1 6 2 6 1 6 2 6 6 − 2 6 − 6 2 6 − 6 1 6 2 6 − 6 6 − 5 6 − 6 ] = [ 1 6 2 6 1 6 1 3 − 1 3 1 3 1 2 0 − 1 2 ] S=\begin{bmatrix}1&O^{\text T}\\[2ex]O&H_2\end{bmatrix}H_1 =\begin{bmatrix} 1&0&0\\[2ex]0&\cfrac{6-x^2}{{x^2+6}} & \cfrac{-2\sqrt{6}x}{{x^2+6}} \\[2ex] 0&\cfrac{-2\sqrt{6}x}{{x^2+6}} & \cfrac{x^2-6}{{x^2+6}}\end{bmatrix} \begin{bmatrix} \cfrac{1}{\sqrt{6}} & \cfrac{2}{\sqrt{6}} & \cfrac{1}{\sqrt{6}} \\ \cfrac{2}{\sqrt{6}} & \cfrac{\sqrt{6}-2}{\sqrt{6}-6} & \cfrac{2}{\sqrt{6}-6} \\ \cfrac{1}{\sqrt{6}} & \cfrac{2}{\sqrt{6}-6} & \cfrac{\sqrt{6}-5}{\sqrt{6}-6} \end{bmatrix} =\begin{bmatrix} \cfrac{1}{\sqrt{6}} & \cfrac{2}{\sqrt{6}} & \cfrac{1}{\sqrt{6}} \\ \cfrac{1}{\sqrt{3}} & -\cfrac{1}{\sqrt{3}} & \cfrac{1}{\sqrt{3}} \\ \cfrac{1}{\sqrt{2}} & 0 & -\cfrac{1}{\sqrt{2}} \end{bmatrix} S=[1OOTH2]H1= 1000x2+66−x2x2+6−26x0x2+6−26xx2+6x2−6 616261626−66−26−62616−626−66−5 = 61312162−3106131−21
Q = S T = = [ 1 6 1 3 1 2 2 6 − 1 3 0 1 6 1 3 − 1 2 ] , R = S A = [ 6 6 7 6 0 3 1 3 0 0 1 2 ] Q=S^{\rm T}= =\begin{bmatrix} \cfrac{1}{\sqrt{6}} & \cfrac{1}{\sqrt{3}} & \cfrac{1}{\sqrt{2}} \\ \cfrac{2}{\sqrt{6}} & -\cfrac{1}{\sqrt{3}} & 0 \\ \cfrac{1}{\sqrt{6}} & \cfrac{1}{\sqrt{3}} & -\cfrac{1}{\sqrt{2}} \end{bmatrix},\quad R=SA=\begin{bmatrix} \sqrt{6} & \sqrt{6} & \cfrac{7}{\sqrt{6}} \\ 0 & {\sqrt{3}} & \cfrac{1}{\sqrt{3}} \\ 0 & 0 & \cfrac{1}{\sqrt{2}} \end{bmatrix} Q=ST== 61626131−3131210−21 ,R=SA= 600630673121
则有 A = Q R A=QR A=QR。(感兴趣的读者可用MATLAB验证结果,没想到一个小小的矩阵计算这么复杂(╯﹏╰))