当前位置: 首页 > news >正文

矩阵分解相关知识点总结(三)

书接上回,CSDN发不了长文,只能这样分开发了😔

  完成矩阵的QR分解有三种常用的方法:Schmidt正交化方法,Givens变换方法和Householder变换方法。下面通过一个具体实例,将矩阵 A = [ 1 2 2 2 1 2 1 2 1 ] A=\begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 1 & 2 & 1 \end{bmatrix} A= 121212221 分别用上述三种方法进行QR分解。

Schmidt正交化方法:

  令 a 1 = ( 1 , 2 , 1 ) T , a 2 = ( 2 , 1 , 2 ) T , a 3 = ( 2 , 2 , 1 ) T \bm{a}_1=(1,2,1)^{\rm T},\,\bm{a}_2=(2,1,2)^{\rm T},\,\bm{a}_3=(2,2,1)^{\rm T} a1=(1,2,1)T,a2=(2,1,2)T,a3=(2,2,1)T,将其Schmidt正交化可得:
b 1 = a 1 = ( 1 , 2 , 1 ) T b 2 = a 2 − ( a 2 , b 1 ) ( b 1 , b 1 ) b 1 = a 2 − b 1 = ( 1 , − 1 , 1 ) T b 3 = a 3 − ( a 3 , b 1 ) ( b 1 , b 1 ) b 1 − ( a 3 , b 2 ) ( b 2 , b 2 ) b 2 = a 3 − 1 3 b 2 − 7 6 b 1 = ( 1 2 , 0 , − 1 2 ) T \begin{array}{l}\bm{b}_1=\bm{a}_1=(1,2,1)^{\rm T}\\[2ex] \bm{b}_2=\bm{a}_2-\cfrac{(\bm{a}_2,\bm{b}_1)}{(\bm{b}_1,\bm{b}_1)}\bm{b}_1=\bm{a}_2-\bm{b}_1=(1,-1,1)^{\rm T}\\[2ex] \bm{b}_3=\bm{a}_3-\cfrac{(\bm{a}_3,\bm{b}_1)}{(\bm{b}_1,\bm{b}_1)}\bm{b}_1-\cfrac{(\bm{a}_3,\bm{b}_2)}{(\bm{b}_2,\bm{b}_2)}\bm{b}_2=\bm{a}_3-\cfrac{1}{3}\bm{b}_2-\cfrac{7}{6}\bm{b}_1=(\cfrac{1}{2},0,-\cfrac{1}{2})^{\rm T}\end{array} b1=a1=(1,2,1)Tb2=a2(b1,b1)(a2,b1)b1=a2b1=(1,1,1)Tb3=a3(b1,b1)(a3,b1)b1(b2,b2)(a3,b2)b2=a331b267b1=(21,0,21)T

进而有:
( a 1 , a 2 , a 3 ) = ( b 1 , b 2 , b 3 ) ⋅ C = ( b 1 , b 2 , b 3 ) [ 1 1 7 6 0 1 1 3 0 0 1 ] (\bm{a}_1,\bm{a}_2,\bm{a}_3)= (\bm{b}_1,\bm{b}_2,\bm{b}_3)\cdot C=(\bm{b}_1,\bm{b}_2,\bm{b}_3) \begin{bmatrix} 1 & 1 & \cfrac{7}{6} \\[2ex] 0 & 1 & \cfrac{1}{3} \\[2ex] 0 & 0 & 1 \end{bmatrix} (a1,a2,a3)=(b1,b2,b3)C=(b1,b2,b3) 10011067311

  取:
q 1 = 1 ∣ b 1 ∣ ∣ b 1 ∣ = 1 6 ( 1 , 2 , 1 ) T q 2 = 1 ∣ b 2 ∣ ∣ b 2 ∣ = 1 3 ( 1 , − 1 , 1 ) T q 3 = 1 ∣ b 3 ∣ ∣ b 3 ∣ = 1 2 ( 1 , 0 , − 1 ) T \begin{array}{l}\bm{q}_1=\cfrac{1}{|\bm{b}_1|}|\bm{b}_1|=\cfrac{1}{\sqrt{6}}(1,2,1)^{\rm T}\\[2ex] \bm{q}_2=\cfrac{1}{|\bm{b}_2|}|\bm{b}_2|=\cfrac{1}{\sqrt{3}}(1,-1,1)^{\rm T}\\[2ex] \bm{q}_3=\cfrac{1}{|\bm{b}_3|}|\bm{b}_3|=\cfrac{1}{\sqrt{2}}(1,0,-1)^{\rm T}\end{array} q1=b11b1=6 1(1,2,1)Tq2=b21b2=3 1(1,1,1)Tq3=b31b3=2 1(1,0,1)T

  令:
Q = ( q 1 , q 2 , q 3 ) = [ 1 6 1 3 1 2 2 6 − 1 3 0 1 6 1 3 − 1 2 ] R = d i a g ( ∣ b 1 ∣ , ∣ b 2 ∣ , ∣ b 3 ∣ ) ⋅ C = [ 6 0 0 0 3 0 0 0 1 2 ] [ 1 1 7 6 0 1 1 3 0 0 1 ] = [ 6 6 7 6 0 3 1 3 0 0 1 2 ] \begin{array}{l} Q=(\bm{q}_1,\bm{q}_2,\bm{q}_3)= \begin{bmatrix} \cfrac{1}{\sqrt{6}} & \cfrac{1}{\sqrt{3}} & \cfrac{1}{\sqrt{2}} \\ \cfrac{2}{\sqrt{6}} & -\cfrac{1}{\sqrt{3}} & 0 \\ \cfrac{1}{\sqrt{6}} & \cfrac{1}{\sqrt{3}} & -\cfrac{1}{\sqrt{2}} \end{bmatrix}\\ R=\rm{diag}(|\bm{b}_1|,|\bm{b}_2|,|\bm{b}_3|)\cdot C= \begin{bmatrix} \sqrt{6} & 0 & 0 \\ 0 & \sqrt{3} & 0 \\ 0 & 0 & \cfrac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} 1 & 1 & \cfrac{7}{6} \\[2ex] 0 & 1 & \cfrac{1}{3} \\[2ex] 0 & 0 & 1 \end{bmatrix}= \begin{bmatrix} \sqrt{6} & \sqrt{6} & \cfrac{7}{\sqrt{6}} \\[2ex] 0 & \sqrt{3} & \cfrac{1}{\sqrt{3}} \\[2ex] 0 & 0 & \cfrac{1}{\sqrt{2}} \end{bmatrix} \end{array} Q=(q1,q2,q3)= 6 16 26 13 13 13 12 102 1 R=diag(b1,b2,b3)C= 6 0003 0002 1 10011067311 = 6 006 3 06 73 12 1

则有 A = Q R A=QR A=QR

Givens变换方法:
  第1步,对 A ( 0 ) = A = [ 1 2 2 2 1 2 1 2 1 ] A^{(0)}=A=\left[\begin{array}{c:cc}1 & 2 & 2 \\ 2 & 1 & 2 \\ 1 & 2 & 1 \end{array}\right] A(0)=A= 121212221 的第1列 b ( 1 ) = [ 1 2 1 ] \bm{b}^{(1)}=\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} b(1)= 121 构造旋转矩阵 T 1 T_1 T1,使 T 1 b ( 1 ) = ∣ b ( 1 ) ∣ e 1 T_1\bm{b}^{(1)}=|\bm{b}^{(1)}|\bm{e}_1 T1b(1)=b(1)e1

T 1 = T 13 T 12 = [ 5 6 0 1 6 0 1 0 − 1 6 0 5 6 ] [ 1 5 2 5 0 − 2 5 1 5 0 0 0 1 ] = [ 1 6 2 6 1 6 − 2 5 1 5 0 − 1 30 − 2 30 5 6 ] T_1=T_{13}T_{12}=\begin{bmatrix} \cfrac{\sqrt{5}}{\sqrt{6}} & 0 & \cfrac{1}{\sqrt{6}} \\ 0 & 1 & 0 \\ -\cfrac{1}{\sqrt{6}} & 0 & \cfrac{\sqrt{5}}{\sqrt{6}} \end{bmatrix} \begin{bmatrix} \cfrac{1}{\sqrt{5}} & \cfrac{2}{\sqrt{5}} & 0 \\ -\cfrac{2}{\sqrt{5}} & \cfrac{1}{\sqrt{5}} & 0 \\ 0 & 0 & 1 \end{bmatrix} =\begin{bmatrix} \cfrac{1}{\sqrt{6}} & \cfrac{2}{\sqrt{6}} & \cfrac{1}{\sqrt{6}} \\ -\cfrac{2}{\sqrt{5}} & \cfrac{1}{\sqrt{5}} & 0 \\ -\cfrac{1}{\sqrt{30}} & -\cfrac{2}{\sqrt{30}} & \cfrac{\sqrt{5}}{\sqrt{6}} \end{bmatrix} T1=T13T12= 6 5 06 10106 106 5 5 15 205 25 10001 = 6 15 230 16 25 130 26 106 5

T 1 b ( 1 ) = [ 1 6 2 6 1 6 − 2 5 1 5 0 − 1 30 − 2 30 5 6 ] [ 1 2 1 ] = [ 6 0 0 ] T_{1}\bm{b}^{(1)}=\begin{bmatrix} \cfrac{1}{\sqrt{6}} & \cfrac{2}{\sqrt{6}} & \cfrac{1}{\sqrt{6}} \\ -\cfrac{2}{\sqrt{5}} & \cfrac{1}{\sqrt{5}} & 0 \\ -\cfrac{1}{\sqrt{30}} & -\cfrac{2}{\sqrt{30}} & \cfrac{\sqrt{5}}{\sqrt{6}} \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}=\begin{bmatrix} \sqrt{6} \\ 0 \\ 0 \end{bmatrix} T1b(1)= 6 15 230 16 25 130 26 106 5 121 = 6 00

T 1 A ( 0 ) = [ 1 6 2 6 1 6 − 2 5 1 5 0 − 1 30 − 2 30 5 6 ] [ 1 2 2 2 1 2 1 2 1 ] = [ 6 6 7 6 0 − 3 5 − 2 5 0 6 30 − 1 30 ] T_{1}A^{(0)}=\begin{bmatrix} \cfrac{1}{\sqrt{6}} & \cfrac{2}{\sqrt{6}} & \cfrac{1}{\sqrt{6}} \\ -\cfrac{2}{\sqrt{5}} & \cfrac{1}{\sqrt{5}} & 0 \\ -\cfrac{1}{\sqrt{30}} & -\cfrac{2}{\sqrt{30}} & \cfrac{\sqrt{5}}{\sqrt{6}} \end{bmatrix} \begin{bmatrix} 1&2&2 \\ 2&1&2 \\ 1&2&1 \end{bmatrix} =\left[\begin{array}{c:cc} \sqrt{6} & \sqrt{6} & \cfrac{7}{\sqrt{6}} \\\hdashline 0 & -\cfrac{3}{\sqrt{5}} & -\cfrac{2}{\sqrt{5}} \\ 0 & \cfrac{6}{\sqrt{30}} & -\cfrac{1}{\sqrt{30}} \end{array}\right] T1A(0)= 6 15 230 16 25 130 26 106 5 121212221 = 6 006 5 330 66 75 230 1

  第2步,对 A ( 1 ) = [ − 3 5 − 2 5 6 30 − 1 30 ] A^{(1)}=\left[\begin{array}{c:c} -\cfrac{3}{\sqrt{5}} & -\cfrac{2}{\sqrt{5}} \\ \cfrac{6}{\sqrt{30}} & -\cfrac{1}{\sqrt{30}} \end{array}\right] A(1)= 5 330 65 230 1 的第1列 b ( 2 ) = [ − 3 5 6 30 ] \bm{b}^{(2)}=\begin{bmatrix} -\cfrac{3}{\sqrt{5}} \\ \cfrac{6}{\sqrt{30}} \end{bmatrix} b(2)= 5 330 6 构造旋转矩阵 T 2 T_2 T2,使 T 2 b ( 2 ) = ∣ b ( 2 ) ∣ e 1 T_2\bm{b}^{(2)}=|\bm{b}^{(2)}|\bm{e}_1 T2b(2)=b(2)e1

T 2 = T 12 = [ − 3 5 2 10 − 2 10 − 3 5 ] T_2=T_{12}=\begin{bmatrix} -\cfrac{\sqrt{3}}{\sqrt{5}} & \cfrac{2}{\sqrt{10}} \\ -\cfrac{2}{\sqrt{10}} & -\cfrac{\sqrt{3}}{\sqrt{5}} \end{bmatrix} T2=T12= 5 3 10 210 25 3

T 2 b ( 2 ) = [ − 3 5 2 10 − 2 10 − 3 5 ] [ − 3 5 6 30 ] = [ 3 0 ] T_2\bm{b}^{(2)}=\begin{bmatrix} -\cfrac{\sqrt{3}}{\sqrt{5}} & \cfrac{2}{\sqrt{10}} \\ -\cfrac{2}{\sqrt{10}} & -\cfrac{\sqrt{3}}{\sqrt{5}} \end{bmatrix} \begin{bmatrix} -\cfrac{3}{\sqrt{5}} \\ \cfrac{6}{\sqrt{30}} \end{bmatrix} =\begin{bmatrix} {\sqrt{3}} \\ 0 \end{bmatrix} T2b(2)= 5 3 10 210 25 3 5 330 6 =[3 0]

T 2 A ( 1 ) = [ − 3 5 2 10 − 2 10 − 3 5 ] [ − 3 5 − 2 5 6 30 − 1 30 ] = [ 3 1 3 0 1 2 ] T_2A^{(1)}=\begin{bmatrix} -\cfrac{\sqrt{3}}{\sqrt{5}} & \cfrac{2}{\sqrt{10}} \\ -\cfrac{2}{\sqrt{10}} & -\cfrac{\sqrt{3}}{\sqrt{5}} \end{bmatrix} \begin{bmatrix} -\cfrac{3}{\sqrt{5}} & -\cfrac{2}{\sqrt{5}} \\ \cfrac{6}{\sqrt{30}} & -\cfrac{1}{\sqrt{30}} \end{bmatrix} =\begin{bmatrix} {\sqrt{3}} & \cfrac{1}{\sqrt{3}} \\ 0 & \cfrac{1}{\sqrt{2}} \end{bmatrix} T2A(1)= 5 3 10 210 25 3 5 330 65 230 1 = 3 03 12 1

  最后,令
T = [ 1 O T O T 2 ] T 1 = [ 1 0 0 0 − 3 5 2 10 0 − 2 10 − 3 5 ] [ 1 6 2 6 1 6 − 2 5 1 5 0 − 1 30 − 2 30 5 6 ] = [ 1 6 2 6 1 6 1 3 − 1 3 1 3 1 2 0 − 1 2 ] T=\begin{bmatrix}1&O^{\text T}\\[2ex]O&T_2\end{bmatrix}T_1 =\begin{bmatrix} 1&0&0\\0&-\cfrac{\sqrt{3}}{\sqrt{5}} & \cfrac{2}{\sqrt{10}} \\ 0&-\cfrac{2}{\sqrt{10}} & -\cfrac{\sqrt{3}}{\sqrt{5}} \end{bmatrix} \begin{bmatrix} \cfrac{1}{\sqrt{6}} & \cfrac{2}{\sqrt{6}} & \cfrac{1}{\sqrt{6}} \\ -\cfrac{2}{\sqrt{5}} & \cfrac{1}{\sqrt{5}} & 0 \\ -\cfrac{1}{\sqrt{30}} & -\cfrac{2}{\sqrt{30}} & \cfrac{\sqrt{5}}{\sqrt{6}} \end{bmatrix} =\begin{bmatrix} \cfrac{1}{\sqrt{6}} & \cfrac{2}{\sqrt{6}} & \cfrac{1}{\sqrt{6}} \\ \cfrac{1}{\sqrt{3}} & -\cfrac{1}{\sqrt{3}} & \cfrac{1}{\sqrt{3}} \\ \cfrac{1}{\sqrt{2}} & 0 & -\cfrac{1}{\sqrt{2}} \end{bmatrix} T=[1OOTT2]T1= 10005 3 10 2010 25 3 6 15 230 16 25 130 26 106 5 = 6 13 12 16 23 106 13 12 1

Q = T T = = [ 1 6 1 3 1 2 2 6 − 1 3 0 1 6 1 3 − 1 2 ] , R = T A = [ 6 6 7 6 0 3 1 3 0 0 1 2 ] Q=T^{\text T}= =\begin{bmatrix} \cfrac{1}{\sqrt{6}} & \cfrac{1}{\sqrt{3}} & \cfrac{1}{\sqrt{2}} \\ \cfrac{2}{\sqrt{6}} & -\cfrac{1}{\sqrt{3}} & 0 \\ \cfrac{1}{\sqrt{6}} & \cfrac{1}{\sqrt{3}} & -\cfrac{1}{\sqrt{2}} \end{bmatrix},\quad R=TA=\begin{bmatrix} \sqrt{6} & \sqrt{6} & \cfrac{7}{\sqrt{6}} \\ 0 & {\sqrt{3}} & \cfrac{1}{\sqrt{3}} \\ 0 & 0 & \cfrac{1}{\sqrt{2}} \end{bmatrix} Q=TT== 6 16 26 13 13 13 12 102 1 ,R=TA= 6 006 3 06 73 12 1

则有 A = Q R A=QR A=QR

Householder变换方法:
  第1步,对 A ( 0 ) = A = [ 1 2 2 2 1 2 1 2 1 ] A^{(0)}=A=\left[\begin{array}{c:cc}1 & 2 & 2 \\ 2 & 1 & 2 \\ 1 & 2 & 1 \end{array}\right] A(0)=A= 121212221 的第1列 b ( 1 ) = [ 1 2 1 ] \bm{b}^{(1)}=\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} b(1)= 121 构造Householder矩阵 H 1 H_1 H1,使 H 1 b ( 1 ) = ∣ b ( 1 ) ∣ e 1 H_1\bm{b}^{(1)}=|\bm{b}^{(1)}|\bm{e}_1 H1b(1)=b(1)e1
b ( 1 ) − ∣ b ( 1 ) ∣ e 1 = [ 1 2 1 ] − 6 [ 1 0 0 ] = [ 1 − 6 2 1 ] \bm{b}^{(1)}-|\bm{b}^{(1)}|\bm{e}_1=\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}-\sqrt{6}\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}=\begin{bmatrix} 1-\sqrt{6} \\ 2 \\ 1 \end{bmatrix} b(1)b(1)e1= 121 6 100 = 16 21

u = b ( 1 ) − ∣ b ( 1 ) ∣ e 1 ∣ b ( 1 ) − ∣ b ( 1 ) ∣ e 1 ∣ = 1 12 − 2 6 [ 1 − 6 2 1 ] \bm{u}=\cfrac{\bm{b}^{(1)}-|\bm{b}^{(1)}|\bm{e}_1}{|\bm{b}^{(1)}-|\bm{b}^{(1)}|\bm{e}_1|}= \cfrac{1}{\sqrt{12-2\sqrt{6}}}\begin{bmatrix} 1-\sqrt{6} \\ 2 \\ 1 \end{bmatrix} u=b(1)b(1)e1b(1)b(1)e1=1226 1 16 21

H 1 = I − 2 u u T = [ 1 0 0 0 1 0 0 0 1 ] − 1 6 − 6 [ 1 − 6 2 1 ] [ 1 − 6 2 1 ] = [ 1 6 2 6 1 6 2 6 6 − 2 6 − 6 2 6 − 6 1 6 2 6 − 6 6 − 5 6 − 6 ] H_1=I-2\bm{uu}^{\rm T}=\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}- \cfrac{1}{6-\sqrt{6}}\begin{bmatrix} 1-\sqrt{6} \\ 2 \\ 1 \end{bmatrix}\begin{bmatrix} 1-\sqrt{6} & 2 & 1 \end{bmatrix}= \begin{bmatrix} \cfrac{1}{\sqrt{6}} & \cfrac{2}{\sqrt{6}} & \cfrac{1}{\sqrt{6}} \\ \cfrac{2}{\sqrt{6}} & \cfrac{\sqrt{6}-2}{\sqrt{6}-6} & \cfrac{2}{\sqrt{6}-6} \\ \cfrac{1}{\sqrt{6}} & \cfrac{2}{\sqrt{6}-6} & \cfrac{\sqrt{6}-5}{\sqrt{6}-6} \end{bmatrix} H1=I2uuT= 100010001 66 1 16 21 [16 21]= 6 16 26 16 26 66 26 626 16 626 66 5

H 1 A ( 0 ) = [ 1 6 2 6 1 6 2 6 6 − 2 6 − 6 2 6 − 6 1 6 2 6 − 6 6 − 5 6 − 6 ] [ 1 2 2 2 1 2 1 2 1 ] = [ 6 6 7 6 0 3 − 6 6 − 1 2 6 0 6 6 − 1 1 6 ] H_1A^{(0)}=\begin{bmatrix} \cfrac{1}{\sqrt{6}} & \cfrac{2}{\sqrt{6}} & \cfrac{1}{\sqrt{6}} \\ \cfrac{2}{\sqrt{6}} & \cfrac{\sqrt{6}-2}{\sqrt{6}-6} & \cfrac{2}{\sqrt{6}-6} \\ \cfrac{1}{\sqrt{6}} & \cfrac{2}{\sqrt{6}-6} & \cfrac{\sqrt{6}-5}{\sqrt{6}-6} \end{bmatrix} \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 1 & 2 & 1 \end{bmatrix}= \left[\begin{array}{c:cc} {\sqrt{6}} & {\sqrt{6}} & \cfrac{7}{\sqrt{6}} \\\hdashline 0 & \cfrac{3-\sqrt{6}}{\sqrt{6}-1} & \cfrac{2}{\sqrt{6}} \\ 0 & \cfrac{\sqrt{6}}{\sqrt{6}-1} & \cfrac{1}{\sqrt{6}} \end{array}\right] H1A(0)= 6 16 26 16 26 66 26 626 16 626 66 5 121212221 = 6 006 6 136 6 16 6 76 26 1

  第2步,对 A ( 1 ) = [ 3 − 6 6 − 1 2 6 6 6 − 1 1 6 ] A^{(1)}=\left[\begin{array}{c:c} \cfrac{3-\sqrt{6}}{\sqrt{6}-1} & \cfrac{2}{\sqrt{6}} \\ \cfrac{\sqrt{6}}{\sqrt{6}-1} & \cfrac{1}{\sqrt{6}} \end{array}\right] A(1)= 6 136 6 16 6 26 1 的第1列 b ( 2 ) = [ 3 − 6 6 − 1 6 6 − 1 ] \bm{b}^{(2)}=\begin{bmatrix} \cfrac{3-\sqrt{6}}{\sqrt{6}-1} \\ \cfrac{\sqrt{6}}{\sqrt{6}-1} \end{bmatrix} b(2)= 6 136 6 16 构造Householder矩阵 H 2 H_2 H2,使 H 2 b ( 2 ) = ∣ b ( 2 ) ∣ e 1 H_2\bm{b}^{(2)}=|\bm{b}^{(2)}|\bm{e}_1 H2b(2)=b(2)e1
b ( 2 ) − ∣ b ( 2 ) ∣ e 1 = [ 3 − 6 6 − 1 6 6 − 1 ] − 21 − 6 6 6 − 1 [ 1 0 ] = [ 3 − 6 − 21 − 6 6 6 − 1 6 6 − 1 ] = [ x 6 − 1 6 6 − 1 ] \bm{b}^{(2)}-|\bm{b}^{(2)}|\bm{e}_1=\begin{bmatrix} \cfrac{3-\sqrt{6}}{\sqrt{6}-1} \\ \cfrac{\sqrt{6}}{\sqrt{6}-1} \end{bmatrix}- \cfrac{\sqrt{21-6\sqrt{6}}}{\sqrt{6}-1} \begin{bmatrix} 1 \\ 0 \end{bmatrix} =\begin{bmatrix} \cfrac{3-\sqrt{6}-\sqrt{21-6\sqrt{6}}}{\sqrt{6}-1} \\ \cfrac{\sqrt{6}}{\sqrt{6}-1} \end{bmatrix} =\begin{bmatrix} \cfrac{x}{\sqrt{6}-1} \\ \cfrac{\sqrt{6}}{\sqrt{6}-1} \end{bmatrix} b(2)b(2)e1= 6 136 6 16 6 12166 [10]= 6 136 2166 6 16 = 6 1x6 16

u = b ( 2 ) − ∣ b ( 2 ) ∣ e 1 ∣ b ( 2 ) − ∣ b ( 2 ) ∣ e 1 ∣ = 6 − 1 x 2 + 6 [ x 6 − 1 6 6 − 1 ] = [ x x 2 + 6 6 x 2 + 6 ] \bm{u}=\cfrac{\bm{b}^{(2)}-|\bm{b}^{(2)}|\bm{e}_1}{|\bm{b}^{(2)}-|\bm{b}^{(2)}|\bm{e}_1|}= \cfrac{\sqrt{6}-1}{\sqrt{x^2+6}} \begin{bmatrix} \cfrac{x}{\sqrt{6}-1} \\ \cfrac{\sqrt{6}}{\sqrt{6}-1} \end{bmatrix} =\begin{bmatrix} \cfrac{x}{\sqrt{x^2+6}} \\ \cfrac{\sqrt{6}}{\sqrt{x^2+6}} \end{bmatrix} u=b(2)b(2)e1b(2)b(2)e1=x2+6 6 1 6 1x6 16 = x2+6 xx2+6 6

H 2 = I − 2 u u T = [ 1 0 0 1 ] − 2 [ x x 2 + 6 6 x 2 + 6 ] [ x x 2 + 6 6 x 2 + 6 ] = [ 6 − x 2 x 2 + 6 − 2 6 x x 2 + 6 − 2 6 x x 2 + 6 x 2 − 6 x 2 + 6 ] H_2=I-2\bm{uu}^{\text T}=\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}- 2\begin{bmatrix} \cfrac{x}{\sqrt{x^2+6}} \\ \cfrac{\sqrt{6}}{\sqrt{x^2+6}} \end{bmatrix} \begin{bmatrix} \cfrac{x}{\sqrt{x^2+6}} & \cfrac{\sqrt{6}}{\sqrt{x^2+6}} \end{bmatrix}= \begin{bmatrix} \cfrac{6-x^2}{{x^2+6}} & \cfrac{-2\sqrt{6}x}{{x^2+6}} \\[2ex] \cfrac{-2\sqrt{6}x}{{x^2+6}} & \cfrac{x^2-6}{{x^2+6}} \end{bmatrix} H2=I2uuT=[1001]2 x2+6 xx2+6 6 [x2+6 xx2+6 6 ]= x2+66x2x2+626 xx2+626 xx2+6x26

H 2 A ( 1 ) = [ 6 − x 2 x 2 + 6 − 2 6 x x 2 + 6 − 2 6 x x 2 + 6 x 2 − 6 x 2 + 6 ] [ 3 − 6 6 − 1 2 6 6 6 − 1 1 6 ] = [ 3 1 3 0 1 2 ] H_2A^{(1)}=\begin{bmatrix} \cfrac{6-x^2}{{x^2+6}} & \cfrac{-2\sqrt{6}x}{{x^2+6}} \\[2ex] \cfrac{-2\sqrt{6}x}{{x^2+6}} & \cfrac{x^2-6}{{x^2+6}} \end{bmatrix} \begin{bmatrix} \cfrac{3-\sqrt{6}}{\sqrt{6}-1} & \cfrac{2}{\sqrt{6}} \\ \cfrac{\sqrt{6}}{\sqrt{6}-1} & \cfrac{1}{\sqrt{6}} \end{bmatrix} =\begin{bmatrix} {\sqrt{3}} & \cfrac{1}{\sqrt{3}} \\ 0 & \cfrac{1}{\sqrt{2}} \end{bmatrix} H2A(1)= x2+66x2x2+626 xx2+626 xx2+6x26 6 136 6 16 6 26 1 = 3 03 12 1

  最后,令
S = [ 1 O T O H 2 ] H 1 = [ 1 0 0 0 6 − x 2 x 2 + 6 − 2 6 x x 2 + 6 0 − 2 6 x x 2 + 6 x 2 − 6 x 2 + 6 ] [ 1 6 2 6 1 6 2 6 6 − 2 6 − 6 2 6 − 6 1 6 2 6 − 6 6 − 5 6 − 6 ] = [ 1 6 2 6 1 6 1 3 − 1 3 1 3 1 2 0 − 1 2 ] S=\begin{bmatrix}1&O^{\text T}\\[2ex]O&H_2\end{bmatrix}H_1 =\begin{bmatrix} 1&0&0\\[2ex]0&\cfrac{6-x^2}{{x^2+6}} & \cfrac{-2\sqrt{6}x}{{x^2+6}} \\[2ex] 0&\cfrac{-2\sqrt{6}x}{{x^2+6}} & \cfrac{x^2-6}{{x^2+6}}\end{bmatrix} \begin{bmatrix} \cfrac{1}{\sqrt{6}} & \cfrac{2}{\sqrt{6}} & \cfrac{1}{\sqrt{6}} \\ \cfrac{2}{\sqrt{6}} & \cfrac{\sqrt{6}-2}{\sqrt{6}-6} & \cfrac{2}{\sqrt{6}-6} \\ \cfrac{1}{\sqrt{6}} & \cfrac{2}{\sqrt{6}-6} & \cfrac{\sqrt{6}-5}{\sqrt{6}-6} \end{bmatrix} =\begin{bmatrix} \cfrac{1}{\sqrt{6}} & \cfrac{2}{\sqrt{6}} & \cfrac{1}{\sqrt{6}} \\ \cfrac{1}{\sqrt{3}} & -\cfrac{1}{\sqrt{3}} & \cfrac{1}{\sqrt{3}} \\ \cfrac{1}{\sqrt{2}} & 0 & -\cfrac{1}{\sqrt{2}} \end{bmatrix} S=[1OOTH2]H1= 1000x2+66x2x2+626 x0x2+626 xx2+6x26 6 16 26 16 26 66 26 626 16 626 66 5 = 6 13 12 16 23 106 13 12 1

Q = S T = = [ 1 6 1 3 1 2 2 6 − 1 3 0 1 6 1 3 − 1 2 ] , R = S A = [ 6 6 7 6 0 3 1 3 0 0 1 2 ] Q=S^{\rm T}= =\begin{bmatrix} \cfrac{1}{\sqrt{6}} & \cfrac{1}{\sqrt{3}} & \cfrac{1}{\sqrt{2}} \\ \cfrac{2}{\sqrt{6}} & -\cfrac{1}{\sqrt{3}} & 0 \\ \cfrac{1}{\sqrt{6}} & \cfrac{1}{\sqrt{3}} & -\cfrac{1}{\sqrt{2}} \end{bmatrix},\quad R=SA=\begin{bmatrix} \sqrt{6} & \sqrt{6} & \cfrac{7}{\sqrt{6}} \\ 0 & {\sqrt{3}} & \cfrac{1}{\sqrt{3}} \\ 0 & 0 & \cfrac{1}{\sqrt{2}} \end{bmatrix} Q=ST== 6 16 26 13 13 13 12 102 1 ,R=SA= 6 006 3 06 73 12 1

则有 A = Q R A=QR A=QR。(感兴趣的读者可用MATLAB验证结果,没想到一个小小的矩阵计算这么复杂(╯﹏╰))

http://www.xdnf.cn/news/887545.html

相关文章:

  • 一日总结0605
  • 【Elasticsearch】Elasticsearch 核心技术(二):映射
  • es在Linux安装
  • 基于Docker Compose部署Java微服务项目
  • 项目根目录添加<meta>标签,记录当前部署版本、分支、时间
  • 分布式光纤传感(DAS)技术应用解析:从原理到落地场景
  • Python语法进阶篇 --- 类和对象
  • git连接本地仓库以及gitee
  • TypeScript进阶知识点
  • 14.AI搭建preparationのBERT预训练模型进行文本分类
  • 企业入驻成都芯谷金融中心·文化科技产业园优势深度解析
  • 浅谈 Linux 防火墙:从原理到实践
  • JSON Web Token (JWT) 详解:由来、原理与应用实践
  • FPGA 的硬件结构
  • Cursor 集成 Figma MCP 实现阅读理解原型图生成方案
  • 【Fifty Project - D33】
  • PlayWright | 初识微软出品的 WEB 应用自动化测试框架
  • 记一次 Windows XP 系统安装配置 Minio
  • vue对axios的封装和使用
  • 在 UE5 蓝图中配置Actor类型的Asset以作为位置和旋转设置目标
  • 动态表单 LiveCycle 与 AcroForms 对比
  • VAE变分自编码器详解
  • 用 NGINX 搭建高效 IMAP 代理`ngx_mail_imap_module`
  • v-if与v-for联合使用
  • IDEA 开发PHP配置调试插件XDebug
  • 【C++11新特性】
  • 移动应用开发期末复习
  • 能不能用string接收数据库的datetime类型字段
  • ServBay 1.13.0 更新,新增第三方反向代理/内网穿透
  • 【C语言练习】082. 使用C语言实现简单的加密算法