当前位置: 首页 > news >正文

【Oracle】分区表

在这里插入图片描述

个人主页:Guiat
归属专栏:Oracle

在这里插入图片描述

文章目录

  • 1. 分区表基础概述
    • 1.1 分区表的概念与优势
    • 1.2 分区类型概览
    • 1.3 分区表的工作原理
  • 2. 范围分区 (RANGE Partitioning)
    • 2.1 基础范围分区
      • 2.1.1 按日期范围分区
      • 2.1.2 按数值范围分区
    • 2.2 间隔分区 (INTERVAL Partitioning)
      • 2.2.1 自动创建月度分区
      • 2.2.2 间隔分区的管理操作
  • 3. 列表分区 (LIST Partitioning)
    • 3.1 基础列表分区
      • 3.1.1 按地区分区
      • 3.1.2 按状态分区
    • 3.2 列表分区的动态管理
      • 3.2.1 分区值管理
  • 4. 哈希分区 (HASH Partitioning)
    • 4.1 基础哈希分区
      • 4.1.1 均匀数据分布
      • 4.1.2 多列哈希分区
    • 4.2 哈希分区的性能优化
      • 4.2.1 并行查询优化
  • 5. 复合分区 (Composite Partitioning)
    • 5.1 范围-哈希复合分区
      • 5.1.1 按日期范围和哈希的复合分区
      • 5.1.2 复合分区的查询优化

正文

1. 分区表基础概述

分区表是Oracle数据库中将大表物理分割成多个较小、更易管理的片段的技术。每个分区可以独立管理,同时对应用程序保持透明。

1.1 分区表的概念与优势

Oracle分区表
性能优势
管理优势
可用性优势
存储优势
分区消除
并行处理
分区连接
索引优化
独立维护
分区交换
在线重定义
统计信息管理
分区级备份
故障隔离
在线操作
快速恢复
数据压缩
存储分层
空间管理
归档策略

1.2 分区类型概览

Oracle分区类型
单级分区
复合分区
范围分区 RANGE
列表分区 LIST
哈希分区 HASH
间隔分区 INTERVAL
引用分区 REFERENCE
虚拟列分区 VIRTUAL COLUMN
范围-哈希 RANGE-HASH
范围-列表 RANGE-LIST
列表-哈希 LIST-HASH
列表-列表 LIST-LIST
范围-范围 RANGE-RANGE
间隔-哈希 INTERVAL-HASH

1.3 分区表的工作原理

SQL查询
分区剪枝
确定目标分区
并行执行
结果合并
返回结果
分区键
分区函数
分区映射
物理存储

2. 范围分区 (RANGE Partitioning)

2.1 基础范围分区

2.1.1 按日期范围分区

-- 创建按日期范围分区的销售表
CREATE TABLE sales_range_date (sale_id NUMBER,customer_id NUMBER,product_id NUMBER,sale_date DATE,amount NUMBER(10,2),quantity NUMBER,sales_rep_id NUMBER
)
PARTITION BY RANGE (sale_date) (PARTITION sales_2020 VALUES LESS THAN (DATE '2021-01-01'),PARTITION sales_2021 VALUES LESS THAN (DATE '2022-01-01'),PARTITION sales_2022 VALUES LESS THAN (DATE '2023-01-01'),PARTITION sales_2023 VALUES LESS THAN (DATE '2024-01-01'),PARTITION sales_future VALUES LESS THAN (MAXVALUE)
);-- 创建分区表的索引
CREATE INDEX idx_sales_range_customer ON sales_range_date (customer_id) LOCAL;
CREATE INDEX idx_sales_range_product ON sales_range_date (product_id) LOCAL;-- 插入测试数据
INSERT INTO sales_range_date VALUES (1, 1001, 2001, DATE '2020-03-15', 1500.00, 3, 501);
INSERT INTO sales_range_date VALUES (2, 1002, 2002, DATE '2021-06-20', 2300.50, 5, 502);
INSERT INTO sales_range_date VALUES (3, 1003, 2003, DATE '2022-09-10', 890.75, 2, 503);
INSERT INTO sales_range_date VALUES (4, 1004, 2004, DATE '2023-12-05', 3200.00, 8, 504);
INSERT INTO sales_range_date VALUES (5, 1005, 2005, DATE '2024-02-14', 1750.25, 4, 505);COMMIT;-- 查看分区信息
SELECT table_name, partition_name, high_value, num_rows, blocks
FROM user_tab_partitions 
WHERE table_name = 'SALES_RANGE_DATE'
ORDER BY partition_position;-- 演示分区消除
EXPLAIN PLAN FOR
SELECT * FROM sales_range_date 
WHERE sale_date BETWEEN DATE '2022-01-01' AND DATE '2022-12-31';SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY);

2.1.2 按数值范围分区

-- 创建按员工ID范围分区的员工表
CREATE TABLE employees_range_id (employee_id NUMBER,first_name VARCHAR2(50),last_name VARCHAR2(50),email VARCHAR2(100),hire_date DATE,salary NUMBER(8,2),department_id NUMBER
)
PARTITION BY RANGE (employee_id) (PARTITION emp_1_1000 VALUES LESS THAN (1001),PARTITION emp_1001_2000 VALUES LESS THAN (2001),PARTITION emp_2001_3000 VALUES LESS THAN (3001),PARTITION emp_3001_4000 VALUES LESS THAN (4001),PARTITION emp_others VALUES LESS THAN (MAXVALUE)
);-- 插入测试数据
INSERT INTO employees_range_id VALUES (500, 'John', 'Doe', 'john.doe@company.com', SYSDATE, 5000, 10);
INSERT INTO employees_range_id VALUES (1500, 'Jane', 'Smith', 'jane.smith@company.com', SYSDATE, 6000, 20);
INSERT INTO employees_range_id VALUES (2500, 'Bob', 'Johnson', 'bob.johnson@company.com', SYSDATE, 5500, 30);
INSERT INTO employees_range_id VALUES (3500, 'Alice', 'Brown', 'alice.brown@company.com', SYSDATE, 7000, 40);
INSERT INTO employees_range_id VALUES (5000, 'Mike', 'Wilson', 'mike.wilson@company.com', SYSDATE, 8000, 50);COMMIT;-- 查看数据分布
SELECT 'emp_1_1000' as partition_name, COUNT(*) as row_count FROM employees_range_id PARTITION(emp_1_1000)
UNION ALL
SELECT 'emp_1001_2000', COUNT(*) FROM employees_range_id PARTITION(emp_1001_2000)
UNION ALL
SELECT 'emp_2001_3000', COUNT(*) FROM employees_range_id PARTITION(emp_2001_3000)
UNION ALL
SELECT 'emp_3001_4000', COUNT(*) FROM employees_range_id PARTITION(emp_3001_4000)
UNION ALL
SELECT 'emp_others', COUNT(*) FROM employees_range_id PARTITION(emp_others);

2.2 间隔分区 (INTERVAL Partitioning)

2.2.1 自动创建月度分区

-- 创建间隔分区表(按月自动分区)
CREATE TABLE sales_interval_monthly (sale_id NUMBER,customer_id NUMBER,product_id NUMBER,sale_date DATE,amount NUMBER(10,2),quantity NUMBER
)
PARTITION BY RANGE (sale_date)
INTERVAL (NUMTOYMINTERVAL(1, 'MONTH'))
(PARTITION sales_initial VALUES LESS THAN (DATE '2023-01-01')
);-- 创建本地索引
CREATE INDEX idx_sales_interval_customer ON sales_interval_monthly (customer_id) LOCAL;-- 插入跨多个月的数据,观察自动分区创建
INSERT INTO sales_interval_monthly VALUES (1, 1001, 2001, DATE '2022-12-15', 1500.00, 3);
INSERT INTO sales_interval_monthly VALUES (2, 1002, 2002, DATE '2023-01-20', 2300.50, 5);
INSERT INTO sales_interval_monthly VALUES (3, 1003, 2003, DATE '2023-02-10', 890.75, 2);
INSERT INTO sales_interval_monthly VALUES (4, 1004, 2004, DATE '2023-03-05', 3200.00, 8);
INSERT INTO sales_interval_monthly VALUES (5, 1005, 2005, DATE '2023-04-14', 1750.25, 4);
INSERT INTO sales_interval_monthly VALUES (6, 1006, 2006, DATE '2023-05-22', 2100.00, 6);COMMIT;-- 查看自动创建的分区
SELECT table_name, partition_name, high_value, interval
FROM user_tab_partitions 
WHERE table_name = 'SALES_INTERVAL_MONTHLY'
ORDER BY partition_position;-- 创建间隔分区表(按天自动分区)
CREATE TABLE transaction_log_daily (transaction_id NUMBER,user_id NUMBER,transaction_type VARCHAR2(20),transaction_date DATE,amount NUMBER(12,2),description VARCHAR2(200)
)
PARTITION BY RANGE (transaction_date)
INTERVAL (NUMTODSINTERVAL(1, 'DAY'))
(PARTITION trans_initial VALUES LESS THAN (DATE '2024-01-01')
);-- 插入跨多天的数据
INSERT INTO transaction_log_daily VALUES (1, 1001, 'PURCHASE', DATE '2023-12-30', 150.00, 'Online purchase');
INSERT INTO transaction_log_daily VALUES (2, 1002, 'REFUND', DATE '2024-01-01', -50.00, 'Product return');
INSERT INTO transaction_log_daily VALUES (3, 1003, 'PURCHASE', DATE '2024-01-02', 300.00, 'Store purchase');
INSERT INTO transaction_log_daily VALUES (4, 1004, 'TRANSFER', DATE '2024-01-03', 1000.00, 'Account transfer');COMMIT;-- 查看每日分区
SELECT partition_name, high_value, num_rows
FROM user_tab_partitions 
WHERE table_name = 'TRANSACTION_LOG_DAILY'
ORDER BY partition_position;

2.2.2 间隔分区的管理操作

-- 创建间隔分区管理存储过程
CREATE OR REPLACE PROCEDURE manage_interval_partitions(p_table_name IN VARCHAR2,p_keep_months IN NUMBER DEFAULT 12
)
ASv_sql VARCHAR2(4000);v_partition_count NUMBER := 0;v_dropped_count NUMBER := 0;v_cutoff_date DATE;
BEGINDBMS_OUTPUT.PUT_LINE('=== 间隔分区管理 ===');DBMS_OUTPUT.PUT_LINE('表名: ' || p_table_name);DBMS_OUTPUT.PUT_LINE('保留月数: ' || p_keep_months);-- 计算截止日期v_cutoff_date := ADD_MONTHS(TRUNC(SYSDATE, 'MM'), -p_keep_months);DBMS_OUTPUT.PUT_LINE('删除截止日期: ' || TO_CHAR(v_cutoff_date, 'YYYY-MM-DD'));DBMS_OUTPUT.PUT_LINE('');-- 查询需要删除的分区FOR rec IN (SELECT partition_name, high_valueFROM user_tab_partitionsWHERE table_name = UPPER(p_table_name)AND interval = 'YES'ORDER BY partition_position) LOOPv_partition_count := v_partition_count + 1;-- 解析high_value中的日期DECLAREv_high_date DATE;v_high_value_str VARCHAR2(4000);BEGIN-- 获取分区的上界值SELECT high_value INTO v_high_value_strFROM user_tab_partitionsWHERE table_name = UPPER(p_table_name)AND partition_name = rec.partition_name;-- 执行动态SQL获取日期值EXECUTE IMMEDIATE 'SELECT ' || v_high_value_str || ' FROM dual' INTO v_high_date;DBMS_OUTPUT.PUT_LINE('分区: ' || rec.partition_name || ', 上界: ' || TO_CHAR(v_high_date, 'YYYY-MM-DD'));-- 如果分区太旧,删除它IF v_high_date <= v_cutoff_date THENv_sql := 'ALTER TABLE ' || p_table_name || ' DROP PARTITION ' || rec.partition_name;EXECUTE IMMEDIATE v_sql;v_dropped_count := v_dropped_count + 1;DBMS_OUTPUT.PUT_LINE('  -> 已删除');ELSEDBMS_OUTPUT.PUT_LINE('  -> 保留');END IF;EXCEPTIONWHEN OTHERS THENDBMS_OUTPUT.PUT_LINE('  -> 处理错误: ' || SQLERRM);END;END LOOP;DBMS_OUTPUT.PUT_LINE('');DBMS_OUTPUT.PUT_LINE('=== 管理完成 ===');DBMS_OUTPUT.PUT_LINE('检查分区数: ' || v_partition_count);DBMS_OUTPUT.PUT_LINE('删除分区数: ' || v_dropped_count);DBMS_OUTPUT.PUT_LINE('保留分区数: ' || (v_partition_count - v_dropped_count));EXCEPTIONWHEN OTHERS THENDBMS_OUTPUT.PUT_LINE('管理过程出错: ' || SQLERRM);
END;
/-- 测试分区管理
EXEC manage_interval_partitions('SALES_INTERVAL_MONTHLY', 6);

3. 列表分区 (LIST Partitioning)

3.1 基础列表分区

3.1.1 按地区分区

-- 创建按地区列表分区的客户表
CREATE TABLE customers_list_region (customer_id NUMBER,customer_name VARCHAR2(100),email VARCHAR2(100),phone VARCHAR2(20),region VARCHAR2(20),country VARCHAR2(50),registration_date DATE,status VARCHAR2(20)
)
PARTITION BY LIST (region) (PARTITION customers_north VALUES ('NORTH', 'NORTHEAST', 'NORTHWEST'),PARTITION customers_south VALUES ('SOUTH', 'SOUTHEAST', 'SOUTHWEST'),PARTITION customers_east VALUES ('EAST', 'CENTRAL_EAST'),PARTITION customers_west VALUES ('WEST', 'CENTRAL_WEST'),PARTITION customers_international VALUES ('INTERNATIONAL', 'OVERSEAS'),PARTITION customers_default VALUES (DEFAULT)
);-- 插入测试数据
INSERT INTO customers_list_region VALUES (1, 'ABC Corp', 'contact@abc.com', '555-0001', 'NORTH', 'USA', SYSDATE, 'ACTIVE');
INSERT INTO customers_list_region VALUES (2, 'XYZ Ltd', 'info@xyz.com', '555-0002', 'SOUTH', 'USA', SYSDATE, 'ACTIVE');
INSERT INTO customers_list_region VALUES (3, 'Global Inc', 'sales@global.com', '555-0003', 'INTERNATIONAL', 'UK', SYSDATE, 'ACTIVE');
INSERT INTO customers_list_region VALUES (4, 'Local Store', 'hello@local.com', '555-0004', 'EAST', 'USA', SYSDATE, 'INACTIVE');
INSERT INTO customers_list_region VALUES (5, 'Unknown Co', 'contact@unknown.com', '555-0005', 'OTHER', 'CANADA', SYSDATE, 'PENDING');COMMIT;-- 查看数据分布
SELECT p.partition_name,p.high_value,NVL(s.num_rows, 0) as row_count
FROM user_tab_partitions p
LEFT JOIN user_tab_statistics s ON p.table_name = s.table_name AND p.partition_name = s.partition_name
WHERE p.table_name = 'CUSTOMERS_LIST_REGION'
ORDER BY p.partition_position;-- 查询特定分区的数据
SELECT * FROM customers_list_region PARTITION(customers_north);
SELECT * FROM customers_list_region PARTITION(customers_default);

3.1.2 按状态分区

-- 创建按订单状态分区的订单表
CREATE TABLE orders_list_status (order_id NUMBER,customer_id NUMBER,order_date DATE,total_amount NUMBER(10,2),order_status VARCHAR2(20),payment_method VARCHAR2(20),shipping_address VARCHAR2(200)
)
PARTITION BY LIST (order_status) (PARTITION orders_pending VALUES ('PENDING', 'SUBMITTED', 'PROCESSING'),PARTITION orders_confirmed VALUES ('CONFIRMED', 'PAID', 'PREPARING'),PARTITION orders_shipped VALUES ('SHIPPED', 'IN_TRANSIT', 'OUT_FOR_DELIVERY'),PARTITION orders_completed VALUES ('DELIVERED', 'COMPLETED'),PARTITION orders_cancelled VALUES ('CANCELLED', 'REFUNDED', 'RETURNED'),PARTITION orders_other VALUES (DEFAULT)
);-- 插入测试数据
INSERT INTO orders_list_status VALUES (1001, 1, SYSDATE-5, 150.00, 'PENDING', 'CREDIT_CARD', '123 Main St');
INSERT INTO orders_list_status VALUES (1002, 2, SYSDATE-4, 250.50, 'CONFIRMED', 'PAYPAL', '456 Oak Ave');
INSERT INTO orders_list_status VALUES (1003, 3, SYSDATE-3, 89.99, 'SHIPPED', 'DEBIT_CARD', '789 Pine Rd');
INSERT INTO orders_list_status VALUES (1004, 4, SYSDATE-2, 320.00, 'DELIVERED', 'CASH', '321 Elm St');
INSERT INTO orders_list_status VALUES (1005, 5, SYSDATE-1, 175.25, 'CANCELLED', 'CREDIT_CARD', '654 Maple Dr');
INSERT INTO orders_list_status VALUES (1006, 1, SYSDATE, 99.99, 'UNKNOWN', 'BITCOIN', '987 Cedar Ln');COMMIT;-- 创建订单状态统计视图
CREATE OR REPLACE VIEW order_status_summary AS
SELECT CASE WHEN partition_name = 'ORDERS_PENDING' THEN 'Pending Orders'WHEN partition_name = 'ORDERS_CONFIRMED' THEN 'Confirmed Orders'WHEN partition_name = 'ORDERS_SHIPPED' THEN 'Shipped Orders'WHEN partition_name = 'ORDERS_COMPLETED' THEN 'Completed Orders'WHEN partition_name = 'ORDERS_CANCELLED' THEN 'Cancelled Orders'ELSE 'Other Status'END as status_category,COUNT(*) as order_count,SUM(total_amount) as total_value
FROM (SELECT 'ORDERS_PENDING' as partition_name, total_amount FROM orders_list_status PARTITION(orders_pending)UNION ALLSELECT 'ORDERS_CONFIRMED', total_amount FROM orders_list_status PARTITION(orders_confirmed)UNION ALLSELECT 'ORDERS_SHIPPED', total_amount FROM orders_list_status PARTITION(orders_shipped)UNION ALLSELECT 'ORDERS_COMPLETED', total_amount FROM orders_list_status PARTITION(orders_completed)UNION ALLSELECT 'ORDERS_CANCELLED', total_amount FROM orders_list_status PARTITION(orders_cancelled)UNION ALLSELECT 'ORDERS_OTHER', total_amount FROM orders_list_status PARTITION(orders_other)
)
GROUP BY partition_name
ORDER BY order_count DESC;-- 查看订单状态汇总
SELECT * FROM order_status_summary;

3.2 列表分区的动态管理

3.2.1 分区值管理

-- 创建列表分区管理存储过程
CREATE OR REPLACE PROCEDURE manage_list_partition_values(p_table_name IN VARCHAR2,p_partition_name IN VARCHAR2,p_action IN VARCHAR2, -- 'ADD' or 'DROP'p_values IN VARCHAR2  -- 逗号分隔的值列表
)
ASv_sql VARCHAR2(4000);v_current_values CLOB;TYPE value_array IS TABLE OF VARCHAR2(100);v_values_to_process value_array;v_value VARCHAR2(100);v_pos NUMBER;v_remaining VARCHAR2(4000);
BEGINDBMS_OUTPUT.PUT_LINE('=== 列表分区值管理 ===');DBMS_OUTPUT.PUT_LINE('表名: ' || p_table_name);DBMS_OUTPUT.PUT_LINE('分区名: ' || p_partition_name);DBMS_OUTPUT.PUT_LINE('操作: ' || p_action);DBMS_OUTPUT.PUT_LINE('值: ' || p_values);-- 获取当前分区值SELECT high_value INTO v_current_valuesFROM user_tab_partitionsWHERE table_name = UPPER(p_table_name)AND partition_name = UPPER(p_partition_name);DBMS_OUTPUT.PUT_LINE('当前分区值: ' || v_current_values);-- 解析输入的值列表v_remaining := p_values;v_values_to_process := value_array();WHILE LENGTH(v_remaining) > 0 LOOPv_pos := INSTR(v_remaining, ',');IF v_pos > 0 THENv_value := TRIM(SUBSTR(v_remaining, 1, v_pos - 1));v_remaining := SUBSTR(v_remaining, v_pos + 1);ELSEv_value := TRIM(v_remaining);v_remaining := '';END IF;v_values_to_process.EXTEND;v_values_to_process(v_values_to_process.COUNT) := v_value;END LOOP;-- 执行操作IF UPPER(p_action) = 'ADD' THENFOR i IN 1..v_values_to_process.COUNT LOOPv_sql := 'ALTER TABLE ' || p_table_name || ' MODIFY PARTITION ' || p_partition_name || ' ADD VALUES (''' || v_values_to_process(i) || ''')';BEGINEXECUTE IMMEDIATE v_sql;DBMS_OUTPUT.PUT_LINE('已添加值: ' || v_values_to_process(i));EXCEPTIONWHEN OTHERS THENDBMS_OUTPUT.PUT_LINE('添加值失败 ' || v_values_to_process(i) || ': ' || SQLERRM);END;END LOOP;ELSIF UPPER(p_action) = 'DROP' THENFOR i IN 1..v_values_to_process.COUNT LOOPv_sql := 'ALTER TABLE ' || p_table_name || ' MODIFY PARTITION ' || p_partition_name || ' DROP VALUES (''' || v_values_to_process(i) || ''')';BEGINEXECUTE IMMEDIATE v_sql;DBMS_OUTPUT.PUT_LINE('已删除值: ' || v_values_to_process(i));EXCEPTIONWHEN OTHERS THENDBMS_OUTPUT.PUT_LINE('删除值失败 ' || v_values_to_process(i) || ': ' || SQLERRM);END;END LOOP;ELSERAISE_APPLICATION_ERROR(-20001, '无效的操作类型: ' || p_action);END IF;-- 显示更新后的分区值SELECT high_value INTO v_current_valuesFROM user_tab_partitionsWHERE table_name = UPPER(p_table_name)AND partition_name = UPPER(p_partition_name);DBMS_OUTPUT.PUT_LINE('更新后分区值: ' || v_current_values);EXCEPTIONWHEN OTHERS THENDBMS_OUTPUT.PUT_LINE('操作失败: ' || SQLERRM);
END;
/-- 测试分区值管理
-- 为customers_north分区添加新的地区值
EXEC manage_list_partition_values('CUSTOMERS_LIST_REGION', 'CUSTOMERS_NORTH', 'ADD', 'NORTH_CENTRAL,UPPER_NORTH');-- 查看更新后的分区信息
SELECT partition_name, high_value
FROM user_tab_partitions
WHERE table_name = 'CUSTOMERS_LIST_REGION'AND partition_name = 'CUSTOMERS_NORTH';

4. 哈希分区 (HASH Partitioning)

4.1 基础哈希分区

4.1.1 均匀数据分布

-- 创建哈希分区表用于均匀分布数据
CREATE TABLE products_hash (product_id NUMBER,product_name VARCHAR2(100),category_id NUMBER,price NUMBER(10,2),supplier_id NUMBER,created_date DATE,status VARCHAR2(20)
)
PARTITION BY HASH (product_id)
PARTITIONS 8;-- 创建本地索引
CREATE INDEX idx_products_hash_category ON products_hash (category_id) LOCAL;
CREATE INDEX idx_products_hash_supplier ON products_hash (supplier_id) LOCAL;-- 批量插入测试数据
DECLAREv_categories NUMBER := 10;v_suppliers NUMBER := 20;v_statuses SYS.ODCIVARCHAR2LIST := SYS.ODCIVARCHAR2LIST('ACTIVE', 'INACTIVE', 'DISCONTINUED', 'PENDING');
BEGINFOR i IN 1..10000 LOOPINSERT INTO products_hash VALUES (i,'Product ' || i,MOD(i, v_categories) + 1,ROUND(DBMS_RANDOM.VALUE(10, 1000), 2),MOD(i, v_suppliers) + 1,SYSDATE - DBMS_RANDOM.VALUE(0, 365),v_statuses(MOD(i, 4) + 1));-- 每1000条提交一次IF MOD(i, 1000) = 0 THENCOMMIT;END IF;END LOOP;COMMIT;
END;
/-- 查看哈希分区的数据分布
SELECT partition_name,num_rows,blocks,avg_row_len
FROM user_tab_partitions
WHERE table_name = 'PRODUCTS_HASH'
ORDER BY partition_name;-- 收集统计信息
EXEC DBMS_STATS.GATHER_TABLE_STATS(USER, 'PRODUCTS_HASH');-- 再次查看分布(收集统计信息后)
SELECT partition_name,num_rows,ROUND(num_rows * 100.0 / SUM(num_rows) OVER(), 2) as percentage,blocks
FROM user_tab_partitions
WHERE table_name = 'PRODUCTS_HASH'
ORDER BY partition_name;

4.1.2 多列哈希分区

-- 创建基于多列的哈希分区表
CREATE TABLE user_activities_hash (user_id NUMBER,activity_date DATE,activity_type VARCHAR2(50),session_id VARCHAR2(100),duration_minutes NUMBER,page_views NUMBER,device_type VARCHAR2(20)
)
PARTITION BY HASH (user_id, activity_date)
PARTITIONS 16;-- 插入测试数据
DECLAREv_activity_types SYS.ODCIVARCHAR2LIST := SYS.ODCIVARCHAR2LIST('LOGIN', 'BROWSE', 'SEARCH', 'PURCHASE', 'LOGOUT', 'DOWNLOAD', 'UPLOAD');v_device_types SYS.ODCIVARCHAR2LIST := SYS.ODCIVARCHAR2LIST('DESKTOP', 'MOBILE', 'TABLET');
BEGINFOR i IN 1..50000 LOOPINSERT INTO user_activities_hash VALUES (TRUNC(DBMS_RANDOM.VALUE(1, 5000)),SYSDATE - DBMS_RANDOM.VALUE(0, 30),v_activity_types(TRUNC(DBMS_RANDOM.VALUE(1, 8))),'SESSION_' || LPAD(i, 8, '0'),TRUNC(DBMS_RANDOM.VALUE(1, 120)),TRUNC(DBMS_RANDOM.VALUE(1, 50)),v_device_types(TRUNC(DBMS_RANDOM.VALUE(1, 4))));IF MOD(i, 5000) = 0 THENCOMMIT;DBMS_OUTPUT.PUT_LINE('已插入 ' || i || ' 条记录');END IF;END LOOP;COMMIT;
END;
/-- 收集统计信息
EXEC DBMS_STATS.GATHER_TABLE_STATS(USER, 'USER_ACTIVITIES_HASH');-- 分析哈希分区的均匀性
SELECT partition_name,num_rows,ROUND(num_rows * 100.0 / SUM(num_rows) OVER(), 2) as percentage,blocks,avg_row_len
FROM user_tab_partitions
WHERE table_name = 'USER_ACTIVITIES_HASH'
ORDER BY num_rows DESC;-- 计算分布的标准差(衡量均匀性)
WITH partition_stats AS (SELECT num_rowsFROM user_tab_partitionsWHERE table_name = 'USER_ACTIVITIES_HASH'
)
SELECT ROUND(AVG(num_rows), 2) as avg_rows_per_partition,ROUND(STDDEV(num_rows), 2) as stddev_rows,ROUND(STDDEV(num_rows) / AVG(num_rows) * 100, 2) as coefficient_of_variation
FROM partition_stats;

4.2 哈希分区的性能优化

4.2.1 并行查询优化

-- 创建并行查询测试存储过程
CREATE OR REPLACE PROCEDURE test_hash_partition_performance(p_parallel_degree IN NUMBER DEFAULT 4
)
ASv_start_time TIMESTAMP;v_end_time TIMESTAMP;v_elapsed_seconds NUMBER;v_result_count NUMBER;v_total_amount NUMBER;
BEGINDBMS_OUTPUT.PUT_LINE('=== 哈希分区性能测试 ===');DBMS_OUTPUT.PUT_LINE('并行度: ' || p_parallel_degree);-- 设置并行度EXECUTE IMMEDIATE 'ALTER TABLE products_hash PARALLEL ' || p_parallel_degree;-- 测试1: 全表扫描聚合查询DBMS_OUTPUT.PUT_LINE('');DBMS_OUTPUT.PUT_LINE('测试1: 全表聚合查询');v_start_time := SYSTIMESTAMP;SELECT COUNT(*), SUM(price)INTO v_result_count, v_total_amountFROM products_hashWHERE status = 'ACTIVE';v_end_time := SYSTIMESTAMP;v_elapsed_seconds := EXTRACT(SECOND FROM (v_end_time - v_start_time));DBMS_OUTPUT.PUT_LINE('结果: ' || v_result_count || ' 行, 总金额: ' || ROUND(v_total_amount, 2));DBMS_OUTPUT.PUT_LINE('执行时间: ' || v_elapsed_seconds || ' 秒');-- 测试2: 分区连接查询DBMS_OUTPUT.PUT_LINE('');DBMS_OUTPUT.PUT_LINE('测试2: 分区连接查询');v_start_time := SYSTIMESTAMP;SELECT COUNT(*)INTO v_result_countFROM products_hash pJOIN user_activities_hash u ON MOD(p.product_id, 1000) = MOD(u.user_id, 1000)WHERE p.status = 'ACTIVE'AND u.activity_type = 'PURCHASE';v_end_time := SYSTIMESTAMP;v_elapsed_seconds := EXTRACT(SECOND FROM (v_end_time - v_start_time));DBMS_OUTPUT.PUT_LINE('连接结果: ' || v_result_count || ' 行');DBMS_OUTPUT.PUT_LINE('执行时间: ' || v_elapsed_seconds || ' 秒');-- 测试3: 分区级别的统计DBMS_OUTPUT.PUT_LINE('');DBMS_OUTPUT.PUT_LINE('测试3: 分区级别统计');v_start_time := SYSTIMESTAMP;FOR rec IN (SELECT 'SYS_P' || ROWNUM as partition_name,COUNT(*) as row_count,AVG(price) as avg_price,MAX(price) as max_priceFROM (SELECT price FROM products_hash PARTITION(SYS_P81)UNION ALL SELECT price FROM products_hash PARTITION(SYS_P82)UNION ALL SELECT price FROM products_hash PARTITION(SYS_P83)UNION ALL SELECT price FROM products_hash PARTITION(SYS_P84))GROUP BY 'SYS_P' || ROWNUM) LOOPNULL; -- 只是为了测试执行时间END LOOP;v_end_time := SYSTIMESTAMP;v_elapsed_seconds := EXTRACT(SECOND FROM (v_end_time - v_start_time));DBMS_OUTPUT.PUT_LINE('分区统计执行时间: ' || v_elapsed_seconds || ' 秒');-- 重置并行度EXECUTE IMMEDIATE 'ALTER TABLE products_hash NOPARALLEL';EXCEPTIONWHEN OTHERS THENDBMS_OUTPUT.PUT_LINE('测试过程出错: ' || SQLERRM);EXECUTE IMMEDIATE 'ALTER TABLE products_hash NOPARALLEL';
END;
/-- 执行性能测试
EXEC test_hash_partition_performance(2);
EXEC test_hash_partition_performance(4);

5. 复合分区 (Composite Partitioning)

5.1 范围-哈希复合分区

5.1.1 按日期范围和哈希的复合分区

-- 创建范围-哈希复合分区表
CREATE TABLE sales_composite_range_hash (sale_id NUMBER,customer_id NUMBER,product_id NUMBER,sale_date DATE,amount NUMBER(10,2),quantity NUMBER,sales_rep_id NUMBER,region VARCHAR2(20)
)
PARTITION BY RANGE (sale_date)
SUBPARTITION BY HASH (customer_id)
SUBPARTITIONS 4
(PARTITION sales_2022 VALUES LESS THAN (DATE '2023-01-01'),PARTITION sales_2023 VALUES LESS THAN (DATE '2024-01-01'),PARTITION sales_2024 VALUES LESS THAN (DATE '2025-01-01'),PARTITION sales_future VALUES LESS THAN (MAXVALUE)
);-- 查看复合分区结构
SELECT partition_name,subpartition_name,high_value,subpartition_position
FROM user_tab_subpartitions
WHERE table_name = 'SALES_COMPOSITE_RANGE_HASH'
ORDER BY partition_name, subpartition_position;-- 插入测试数据
DECLAREv_regions SYS.ODCIVARCHAR2LIST := SYS.ODCIVARCHAR2LIST('NORTH', 'SOUTH', 'EAST', 'WEST');
BEGINFOR i IN 1..20000 LOOPINSERT INTO sales_composite_range_hash VALUES (i,TRUNC(DBMS_RANDOM.VALUE(1, 1000)),TRUNC(DBMS_RANDOM.VALUE(1, 500)),DATE '2022-01-01' + DBMS_RANDOM.VALUE(0, 1095), -- 3年范围ROUND(DBMS_RANDOM.VALUE(10, 5000), 2),TRUNC(DBMS_RANDOM.VALUE(1, 20)),TRUNC(DBMS_RANDOM.VALUE(1, 50)),v_regions(TRUNC(DBMS_RANDOM.VALUE(1, 5))));IF MOD(i, 2000) = 0 THENCOMMIT;DBMS_OUTPUT.PUT_LINE('已插入 ' || i || ' 条记录');END IF;END LOOP;COMMIT;
END;
/-- 收集统计信息
EXEC DBMS_STATS.GATHER_TABLE_STATS(USER, 'SALES_COMPOSITE_RANGE_HASH');-- 分析数据分布
SELECT partition_name,subpartition_name,num_rows,blocks
FROM user_tab_subpartitions
WHERE table_name = 'SALES_COMPOSITE_RANGE_HASH'AND num_rows > 0
ORDER BY partition_name, subpartition_name;

5.1.2 复合分区的查询优化

-- 创建复合分区查询分析存储过程
CREATE OR REPLACE PROCEDURE analyze_composite_partition_queries
ASv_count NUMBER;v_amount NUMBER;
BEGINDBMS_OUTPUT.PUT_LINE('=== 复合分区查询分析 ===');-- 查询1: 分区消除 - 只访问特定日期范围DBMS_OUTPUT.PUT_LINE('');DBMS_OUTPUT.PUT_LINE('查询1: 日期范围查询(分区消除)');EXPLAIN PLAN FORSELECT COUNT(*), SUM(amount)FROM sales_composite_range_hashWHERE sale_date BETWEEN DATE '2023-01-01' AND DATE '2023-12-31';SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY(FORMAT => 'BASIC +PARTITION'));-- 查询2: 子分区消除 - 特定客户和日期DBMS_OUTPUT.PUT_LINE('');DBMS_OUTPUT.PUT_LINE('查询2: 客户和日期查询(子分区消除)');EXPLAIN PLAN FORSELECT *FROM sales_composite_range_hashWHERE customer_id = 123AND sale_date BETWEEN DATE '2023-06-01' AND DATE '2023-06-30';SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY(FORMAT => 'BASIC +PARTITION'));-- 查询3: 跨分区聚合DBMS_OUTPUT.PUT_LINE('');DBMS_OUTPUT.PUT_LINE('查询3: 跨分区聚合查询');SELECT EXTRACT(YEAR FROM sale_date) as sale_year,region,COUNT(*) as transaction_count,SUM(amount) as total_amount,AVG(amount) as avg_amountFROM sales_composite_range_hashWHERE sale_date >= DATE '2022-01-01'GROUP BY EXTRACT(YEAR FROM sale_date), regionORDER BY sale_year, region;-- 查询4: 分区级别的并行处理DBMS_OUTPUT.PUT_LINE('');DBMS_OUTPUT.PUT_LINE('查询4: 分区级别统计');FOR rec IN (SELECT partition_name,subpartition_name,COUNT(*) as row_count,SUM(amount) as total_amountFROM (SELECT 'SALES_2023' as partition_name, 'SYS_SUBP101' as subpartition_name, amount FROM sales_composite_range_hash SUBPARTITION(SYS_SUBP101)UNION ALLSELECT 'SALES_2023', 'SYS_SUBP102', amount FROM sales_composite_range_hash SUBPARTITION(SYS_SUBP102)UNION ALLSELECT 'SALES_2023', 'SYS_SUBP103', amount FROM sales_composite_range_hash SUBPARTITION(SYS_SUBP103)UNION ALLSELECT 'SALES_2023', 'SYS_SUBP104', amount FROM sales_composite_range_hash SUBPARTITION(SYS_SUBP104))GROUP BY partition_name, subpartition_nameORDER BY partition_name, subpartition_name) LOOPDBMS_OUTPUT.PUT_LINE(rec.partition_name || '.' || rec.subpartition_name || ': ' || rec.row_count || ' 行, 总额: $' || ROUND(rec.total_amount, 2));END LOOP;END;
/-- 执行复合分区分析
EXEC analyze_composite_partition_queries;

结语
感谢您的阅读!期待您的一键三连!欢迎指正!

在这里插入图片描述

http://www.xdnf.cn/news/886087.html

相关文章:

  • Maxscript快速入门(四)
  • C#、VB.net——如何设置窗体应用程序的外边框不可拉伸
  • Mermaid画UML类图
  • 深度学习N2周:构建词典
  • 【笔记】解决MSYS2安装后cargo-install-update.exe-System Error
  • Mybatis动态SQL语句
  • aitrader兼容talib,布林带的简单策略,创业板十年年年化15.5%,附代码
  • 成都芯谷金融中心·文化科技产业园:构建产业新城的实践与探索
  • Python打卡训练营day45——2025.06.05
  • 11 - ArcGIS For JavaScript -- 高程分析
  • Redis 缓存策略:借助缓存优化数据库性能并保障数据一致性
  • Liunx进程替换
  • 【Linux篇】0基础之学习操作系统进程
  • 2021 RoboCom 世界机器人开发者大赛-高职组(初赛)解题报告 | 珂学家
  • Spring中@Primary注解的作用与使用
  • Dockerfile实践java项目
  • 哈希算法实战全景:安全加密到分布式系统的“核心引擎”
  • 25_06_05Ubuntu系统root密码破解
  • Vite模块联邦(vite-plugin-federation)实现去中心化微前端后台管理系统架构
  • ROS:pcd点云转为路径规划的pgm文件和yaml文件
  • PHP的namespace
  • 第十三节:第五部分:集合框架:集合嵌套
  • ubuntu24.04 使用apt指令只下载不安装软件
  • BENTLY模块特价型号3300/16-14-01-03-00-00-01找小游、主要应用领域
  • ArcGIS Pro 3.4 二次开发 - 公共设施网络
  • windows server2019 不成功的部署docker经历
  • python项目如何创建docker环境
  • 无 sudo 权限下 Conda 安装 GCC 全攻略:虚拟环境适配、版本冲突解决与实战指南
  • 负载均衡将https请求转发后端http服务报错:The plain HTTP request was sent to HTTPS port
  • RAG:大模型微调的革命性增强——检索增强生成技术深度解析