目录
- 一、核心算法实现伪代码
- 1. 多模态数据预处理算法
- 2. 结节良恶性预测模型
- 3. 手术风险评估算法
- 二、系统模块流程图(Mermaid格式)
-
- 三、系统集成方案
-
- 四、系统部署拓扑图
一、核心算法实现伪代码
1. 多模态数据预处理算法
def preprocess_data(ultrasonic_images, clinical_features):normalized_images = []for img in ultrasonic_images:img = resize(img, target_size=(224, 224)) img = normalize(img, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) normalized_images.append(img)normalized_features = (clinical_features - np.mean(clinical_features, axis=0)) / np.std(clinical_features, axis=0)fused_features = np.concatenate((normalized_images, normalized_features), axis=1)return fused_features
2. 结节良恶性预测模型
class NoduleClassificationModel(nn.Module):def __init__(self):super(NoduleClassificationModel, self).__init__()self.image_encoder = ImageTransformer(input_channels=3, num_classes=2)self.clinic_encoder = ClinicalFeatureEncoder(input_dim=10) self.fusion_layer = nn.Linear(512 + 256, 128) self.output_layer = nn.Linear(128, 2) def forward(self, image_data, clinic_data):img_feat = self.image_encoder(image_data)clinic_feat = self.clinic_encoder(clinic_data)fused_feat = torch.cat((img_feat, clinic_feat), dim=1)x = F.relu(self.fusion_layer(fused_feat))return self.output_layer(x)
3. 手术风险评估算法
def train_surgery_risk_model(training_data):training_data['age_tsh_interaction'] = training_data['age'] * training_data['TSH']params = {'objective': 'multi:softprob','num_class': 5, 'eval_metric': 'mlogloss'}model = xgboost.train(params, training_data, num_boost_round=100)return model
二、系统模块流程图(Mermaid格式)
1. 数据预处理流程