当前位置: 首页 > news >正文

我爱学算法之—— 前缀和(上)

一、【模板】前缀和

题目解析

在这里插入图片描述

这道题,给定一个长度为n的数组,和m次询问;

每一次询问给出两个整数lr,让我们求出区间[l , r]中所有数的和,然后输出。

算法思路

这道题暴力解法:

首先是m次查询(m次测试),每一个给定一个lr,让我们求区间[l , r]中所有数的和。

暴力解法就非常简单了,直接遍历区间[l , r],求出区间中所有数的和即可。

暴力解法时间复杂度O(m * n),也就是O(n^2)级别的时间复杂度;

暴力解法会超时,我们这里想一想可不可以对暴力解法进行一些优化:

  1. 首先m次查询,很显然是不能进行优化的。
  2. 我们只能对求区间[l , r]中所有数的和进行优化。

那如何优化呢?

遍历区间[l , r]来求和时间复杂度是O(n),那我们可不可以用O(1)的复杂度来获得区间[l , r]中所有数的和呢?

在这里插入图片描述

通过上图,我们可以发现:我们要求的[l , r]区间的和s就等于区间[1 , r]的和 减去区间[1 , l]的和。

前缀和

所以,我们可以通过运算来用O(1)的时间复杂度获得区间[l , r]中所有数的和;但是我们要用到区间[1 , l]和区间[1 , r]中所有数的和。

所以我们预先既要处理一个前缀和数组dp

  • 其中dp[i]:表示区间[1 , i]中所有数的和。
  • 填写前缀和数组:dp[i] = dp[i-1] + arr[i](也就是前面所有数的和加上当前位置的数)。
  • 计算区间[l , r]中所有数的和:dp[r] - dp[l-1](这里区间[l , r]包含l位置,所以要减去dp[i-1]

这里可以说:前缀和和动态规划的大致思路非常相似:

状态表示dp[i]表示区间[1 , i]中所有数的和

状态转移方程dp[i] = dp[i] + arr[i];

获取区间[l , r]中所有数的和s = dp[r] - dp[l-1];

代码实现

#include <cmath>
#include <iostream>
using namespace std;
const int N = 100001;
long long dp[N];
int arr[N];
int n, m;
int main() {cin >> n >> m;for (int i = 1; i <= n; i++) {cin >> arr[i];dp[i] = dp[i - 1] + arr[i];}while (m--) {int l, r;cin >> l >> r;cout << dp[r] - dp[l - 1] << endl;}return 0;
}

二、【模板】二维前缀和

题目解析

在这里插入图片描述

对于这道题,给定一个n*m的二维数组,以及q次查询;

每一次查询给定x1,x2,y1,y2,我们要求以(x1,y1)为左上角,(x2,y2)为右下角的子矩阵中所有数的和。

算法思路

暴力解法:

q次查询,每一查询给定x1,y1,x2,y2,遍历整个子矩阵进行求和操作。

时间复杂度:O(n*m*q),也就是O(n^3)级别的时间复杂度。

很显然会超时,对暴力解法进行优化,很显然只能优化求子矩阵中所有元素的和。

暴力解法中,遍历整个子矩阵去求和,这样太麻烦了;我们可不可以使用O(1)的时间复杂度拿到子矩阵中所有数的和?

当然也是可以的,这就像数学当中求一块面积的和一样。

在这里插入图片描述

如上图所示,我们要求以(x1 , y1)为左上角,(x2 , y2)为右下角的子矩阵中所有数的和,也就是S

我们只要知道s1(以(1 , 1)为左上角,(x1-1 , y1)为右下角的子矩阵的和)、s2(以(1 , 1)为左上角,(x2, y1-1)为右下角的子矩阵的和)、s3(以(1 , 1)为左上角,(x1-1 , y1-1)为右下角的子矩阵的和)以及s4(以(1 , 1)为左上角,(x2 , y2)为右下角的子矩阵的和)。

我们就可以通过数学运算来求Ss = s4 - s1 - s2 + s3

也就是s = dp[x2][y2] - dp[x2][y1-1] - dp[x1-1][y2] + dp[x1-1][y1-1]

这样我们在填写前缀和表时:

在这里插入图片描述

dp[i][j] = dp[i][j-1] +dp[i-1][j] - dp[i-1][j-1] + arr[i][j]

这里也可以将前缀和理解为动态规划

状态表示dp[i][j]表示以(1,1)为左上角,(i,j)为右下角的子矩阵中所有数的和。

状态转移方程dp[i][j] = dp[i][j-1] +dp[i-1][j] - dp[i-1][j-1] + arr[i][j]

计算子矩阵中所有数的和s = dp[x2][y2] - dp[x2][y1-1] - dp[x1-1][y2] + dp[x1-1][y1-1]

代码实现

#include <iostream>
using namespace std;
const int N = 1001;
int arr[N][N];
long long dp[N][N];
int n, m, q;
int x1, x2, y1, y2;int main() {cin >> n >> m >> q;for (int i = 1; i <= n; i++) {for (int j = 1; j <= m; j++) {cin >> arr[i][j];dp[i][j] = dp[i - 1][j] + dp[i][j - 1] - dp[i - 1][j - 1] + arr[i][j];}}while (q--) {cin >> x1 >> y1 >> x2 >> y2;cout << (dp[x2][y2] - dp[x1 - 1][y2] - dp[x2][y1 - 1] + dp[x1 - 1][y1 - 1]) << endl;}return 0;
}

总结

这里简单总结一下前缀和算法:

首先前缀和算法可以用来快速的求出子数组/子矩阵中所有数的和,在涉及到求子数组/子矩阵的和时,能够利用前缀和算法来快速的求和。

其次,使用前缀和,我们就要预先构建一个前缀和数组并填写该数组;(和动态规划类似)

注意:在构建前缀和数组时,通常下标从1开始,因为在填写数组时要用到dp[i-1]

最后,前缀和算法就是空间换时间,通过预先构建前缀和数组,让我们能够在O(1)的数据复杂度拿到子数组/子矩阵的和。

到这里本篇文章内容就结束了,感谢各位大佬的支持

http://www.xdnf.cn/news/764713.html

相关文章:

  • 【QT控件】QWidget 常用核心属性介绍 -- 万字详解
  • 使用source ~/.bashrc修改环境变量之后,关闭服务器,在重启,环境变量还有吗?
  • Hadoop 大数据启蒙:深入解析分布式基石 HDFS
  • 神经网络基础:从单个神经元到多层网络(superior哥AI系列第3期)
  • 题单:二分查找(最小下标)
  • 记忆解码 | 从神经机制到记忆逻辑的科学探索
  • 2023年12月6级第一套第一篇
  • 【头歌实验】Keras机器翻译实战
  • 什么是 CPU 缓存模型?
  • SMT高速贴片机核心技术深度剖析
  • 基于Python学习《Head First设计模式》第四章 工厂模式+抽象工厂
  • 【设计模式-3.6】结构型——桥接模式
  • 设计模式——访问者设计模式(行为型)
  • 使用 OpenCV (C/C++) 通过二值化增强车牌识别
  • 【机器学习基础】机器学习入门核心:数学基础与Python科学计算库
  • nssctf第一题[SWPUCTF 2021 新生赛]re1
  • 每日算法刷题计划Day20 6.2:leetcode二分答案3道题,用时1h20min
  • 深度学习|pytorch基本运算-hadamard积、点积和矩阵乘法
  • 如何学习才能更好地理解人工智能工程技术专业和其他信息技术专业的关联性?
  • Python-matplotlib库画不规则图
  • 机器视觉图像处理之图像滤波
  • LeetCode 高频 SQL 50 题(基础版) 之 【高级查询和连接】· 上
  • 深度学习与神经网络 前馈神经网络
  • 【LeetCode】数组刷题汇总记录
  • 二、Kubernetes 环境搭建
  • vue中父子参数传递双向的方式不同
  • Git GitHub Gitee
  • Windows环境下Scoop包管理工具的全面指南
  • [yolov11改进系列]基于yolov11引入特征融合注意网络FFA-Net的python源码+训练源码
  • 自定义序列生成器之单体架构实现