当前位置: 首页 > news >正文

中国高分辨率高质量地面NO2数据集(2008-2023)

  • 时间分辨率:日
  • 空间分辨率:1km - 10km
  • 共享方式:开放获取
  • 数据大小:15.36 GB
  • 数据时间范围:2008-01-01 — 2023-12-31
  • 元数据更新时间:2024-08-19

 

数据集摘要

ChinaHighNO2数据集是中国高分辨率高质量近地表空气污染物数据集(ChinaHighAirPollutants, CHAP)中地面NO2数据集。该数据集利用人工智能技术,考虑了空气污染的时空异质特性,从大数据(如地基观测、卫星遥感产品、大气再分析和模式模拟资料等)中生产得到2008年至今全国无缝隙地面NO2数据,主要范围为整个中国地区,空间分辨率2019年之前为10 km,2019年之后为1 km,10公里数据十折交叉验证决定系数R2为0.84,均方根误差RMSE为7.99 µg/m3;1公里数据十折交叉验证决定系数R2为0.93,均方根误差RMSE为4.89 µg/m3,时间分辨率为日、月、年,单位为µg/m3。注意:该数据集持续更新,如需要更多数据,请发邮件联系作者(weijing_rs@163.com; weijing@umd.edu)。 数据文件中包含NC转GeoTiff的四种代码(Python、Matlab、IDL和R语言)nc2geotiff codes。

数据文件命名方式和使用方法

文件命名:该数据以NetCDF文件格式存储,文件的名称为CHAP_NO2_ab_yyyymmdd_V1.nc,其中a表示时间分辨率(D表示日数据,M表示月数据,Y表示年数据),b表示空间分辨率(1K表示1km),yyyy代表年,mm表示月,dd表示日。数据读取方式:可用Python、Matlab、IDL等编程实现文件从nc到tif的转换。数据坐标系为WGS-1984,背景值为65535。

本数据要求的引用方式数据引用必读

数据的引用

韦晶, 李占清. (2023). 中国高分辨率高质量地面NO2数据集(2008-2023). 国家青藏高原科学数据中心. https://doi.org/10.5281/zenodo.4571660.

Wei, J., Li, Z. (2023). ChinaHighNO2: High-resolution and High-quality Ground-level NO2 Dataset for China (2008-2023). National Tibetan Plateau / Third Pole Environment Data Center. https://doi.org/10.5281/zenodo.4571660.

(下载引用: RIS格式 RIS英文格式 Bibtex格式 Bibtex英文格式 )

文章的引用

1、Wei, J., Liu, S., Li, Z., Liu, C., Qin, K., Liu, X., Pinker, R., Dickerson, R., Lin, J., Boersma, K., Sun, L., Li, R., Xue, W., Cui, Y., Zhang, C., & Wang, J. (2022). Ground-level NO2 surveillance from space across China for high resolution using interpretable spatiotemporally weighted artificial intelligence. Environmental Science & Technology, 56(14), 9988–9998. https://doi.org/10.1021/acs.est.2c03834 ( 查看 下载 Bibtex格式 )

2、Wei, J., Li, Z., Wang, J., Li, C., Gupta, P., & Cribb, M. (2023). Ground-level gaseous pollutants (NO2, SO2, and CO) in China: daily seamless mapping and spatiotemporal variations. Atmospheric Chemistry and Physics, 23, 1511–1532. https://doi.org/10.5194/acp-23-1511-2023 ( 查看 下载 Bibtex格式 )

 

http://www.xdnf.cn/news/751681.html

相关文章:

  • 并发执行问题 下
  • 鸿蒙OSUniApp内存管理优化实战:从入门到精通#三方框架 #Uniapp
  • Java设计模式详解:策略模式(Strategy Pattern)
  • Azure devops 系统之五-部署ASP.NET web app
  • Flask中关于app.url_map属性的用法
  • 【MFC】初识MFC
  • 用dayjs解析时间戳,我被提了bug
  • Android的uid~package~pid的关系
  • android lifeCycleOwner生命周期
  • NodeJS全栈开发面试题讲解——P7 DevOps 与部署和跨域等
  • Linux服务器 TensorFlow找不到GPU
  • 手写ArrayList和LinkedList
  • VulnStack|红日靶场——红队评估四
  • 卫生间改造翻新怎么选产品?我在瑞尔特找到了解决方案
  • 什么是闭包
  • 4-香豆酸:CoA连接酶晶体-文献精读138
  • Kubernetes RBAC权限控制:从入门到实战
  • LLM推理相关指标
  • 【深度学习-Day 20】PyTorch入门:核心数据结构张量(Tensor)详解与操作
  • 一周学会Pandas2之Python数据处理与分析-数据重塑与透视-melt() - 融化 / 逆透视 (宽 -> 长)
  • 2.5/Q2,Charls最新文章解读
  • transformer 输入三视图线段输出长宽高 笔记
  • 大模型应用开发之预训练
  • DAY 16 numpy数组与shap深入理解
  • 【第三十八周】BLIP-2:一种高效的视觉语言预训练框架
  • 介绍一种LDPC码译码器
  • Python 爱心图案代码
  • 计算晶体结构和电子能带的软件
  • 【Python高阶】面向对象
  • C语言-10.字符串