当前位置: 首页 > news >正文

吴恩达机器学习笔记:逻辑回归3

3.判定边界

现在说下决策边界(decision boundary)的概念。这个概念能更好地帮助我们理解逻辑回归的假设函数在计算什么。
在这里插入图片描述
在逻辑回归中,我们预测:
当ℎθ (x) >= 0.5时,预测 y = 1。
当ℎθ (x) < 0.5时,预测 y = 0 。

根据上面绘制出的 S 形函数图像,我们知道当
Z = 0 时 g(Z) = 0.5
Z > 0 时 g(Z) > 0.5
Z < 0 时 g(Z) < 0.5 又 Z = θ T x θ^{T}x θTx
即:
θ T x θ^{T}x θTx >= 0 时,预测 y = 1
θ T x θ^{T}x θTx < 0 时,预测 y = 0

现在假设我们有一个模型:
在这里插入图片描述
并且参数θ是向量[-3 1 1] 。 则当−3 + x 1 x_1 x1 + x 2 x_2 x2 ≥ 0,即 x 1 x_1 x1 + x 2 x_2 x2 ≥ 3时,模型将预测 y = 1 。
我们可以绘制直线 x 1 x_1 x1 + x 2 x_2 x2 = 3,这条线便是我们模型的分界线,将预测为1的区域和预测为0的区域分隔开。
假使我们的数据呈现这样的分布情况,怎样的模型才能适合呢?
在这里插入图片描述
因为需要用曲线才能分隔 y = 0 的区域和 y = 1 的区域,我们需要二次方特征:
h θ ( x ) = g ( θ 0 + θ 1 x 1 + θ 2 x 2 + θ 3 x + θ 4 x ) h_\theta(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x + \theta_4 x) hθ(x)=g(θ0+θ1x1+θ2x2+θ3x+θ4x)的参数向量为[-1 0 0 1 1],则我们得到的判定边界恰好是圆点在原点且半径为 1 的圆形。

我们可以用非常复杂的模型来适应非常复杂形状的判定边界。

http://www.xdnf.cn/news/643861.html

相关文章:

  • Python元类(Metaclass)深度解析
  • Volatile的相关内容
  • Lombok与Jackson实现高效JSON序列化与反序列化
  • Python类与对象:面向对象编程的基础
  • Kubernetes 核心原理详解
  • Python实现基于线性回归的空气质量预测系统并达到目标指标
  • 内存管理 : 02 内存分区与分页
  • Python实例题:Python打造漏洞扫描器
  • 【AI论文】KRIS-基准测试:评估下一代智能图像编辑模型的基准
  • LangChain4j HelloWorld
  • 分词算法BPE详解和CLIP的应用
  • 测试计划与用例撰写指南
  • SAP Commerce(Hybris)开发实战(二):登陆生成token问题
  • 企业级智能体 —— 企业 AI 发展的下一个风口?
  • 【公式】批量添加MathType公式编号
  • [Linux]磁盘分区及swap交换空间
  • 第38节:PyTorch模型训练流程详解
  • Baklib知识中台构建实战
  • [DS]使用 Python 库中自带的数据集来实现上述 50 个数据分析和数据可视化程序的示例代码
  • 【LangChain全栈开发指南】从LLM应用到企业级AI助手构建
  • LLM多平台统一调用系统-LiteLLM概述
  • MYSQL备份恢复知识:第五章:备份原理
  • 渗透测试流程-下篇
  • 定时任务调度平台XXL-JOB
  • 基于Python实现JSON点云数据的3D可视化与过滤
  • 美团2025年校招笔试真题手撕教程(三)
  • Spring 源码阅读(循环依赖、Bean 生命周期、AOP、IOC) - 5.2.15.RELEASE
  • 电路笔记(通信):RS-485总线 物理层规范 接口及其组成部分 瑞萨电子RS-485总线笔记
  • vue3中computed计算属性和watch监听的异同点
  • Qt实战教程:设计并实现一个结构清晰、功能完整的桌面应用