当前位置: 首页 > news >正文

[yolov11改进系列]基于yolov11引入双层路由注意力机制Biformer解决小目标遮挡等问题python源码+训练源码

[biformer注意力机制介绍]

一种新型视觉Transformer架构BiFormer,其核心为双层路由注意力机制(BRA),通过动态稀疏性优化计算资源分配。BRA在粗粒度区域过滤不相关键值对,再于路由区域执行细粒度令牌注意力,实现高效长距离依赖建模。实验表明,BiFormer在图像分类、目标检测及语义分割任务中性能显著优于现有模型,兼顾精度与效率。

Transformer凭借其全局感受野和并行计算优势,已成为视觉任务的主流架构。然而,传统注意力机制需计算所有令牌间的成对交互,导致计算复杂度过高。现有方法通过局部窗口、轴向条纹等静态稀疏模式降低计算量,但这些模式与内容无关,限制了模型灵活性。BiFormer提出双层路由注意力机制(BRA),以内容感知方式动态分配计算资源,在粗粒度区域筛选关键区域后执行细粒度注意力,显著提升效率与性能。

双层路由注意力机制(BRA)

BiFormer架构设计

BiFormer采用四阶段金字塔结构(图1),每阶段通过补丁嵌入或合并降低分辨率并增加通道数。核心模块包括:

BRA模块:实现动态稀疏注意力。
深度卷积:编码相对位置信息。
MLP模块:扩展率为 e ee 的2层感知器。
模型变体:

【yolov11框架介绍】

2024 年 9 月 30 日,Ultralytics 在其活动 YOLOVision 中正式发布了 YOLOv11。YOLOv11 是 YOLO 的最新版本,由美国和西班牙的 Ultralytics 团队开发。YOLO 是一种用于基于图像的人工智能的计算机模

Ultralytics YOLO11 概述

YOLO11 是Ultralytics YOLO 系列实时物体检测器的最新版本,以尖端的精度、速度和效率重新定义了可能性。基于先前 YOLO 版本的令人印象深刻的进步,YOLO11 在架构和训练方法方面引入了重大改进,使其成为各种计算机视觉任务的多功能选择。

Key Features 主要特点

  • 增强的特征提取:YOLO11采用改进的主干和颈部架构,增强了特征提取能力,以实现更精确的目标检测和复杂任务性能。
  • 针对效率和速度进行优化:YOLO11 引入了精致的架构设计和优化的训练管道,提供更快的处理速度并保持准确性和性能之间的最佳平衡。
  • 使用更少的参数获得更高的精度:随着模型设计的进步,YOLO11m 在 COCO 数据集上实现了更高的平均精度(mAP),同时使用的参数比 YOLOv8m 少 22%,从而在不影响精度的情况下提高计算效率。
  • 跨环境适应性:YOLO11可以无缝部署在各种环境中,包括边缘设备、云平台以及支持NVIDIA GPU的系统,确保最大的灵活性。
  • 支持的任务范围广泛:无论是对象检测、实例分割、图像分类、姿态估计还是定向对象检测 (OBB),YOLO11 旨在应对各种计算机视觉挑战。

​​​

与之前的版本相比,Ultralytics YOLO11 有哪些关键改进?

Ultralytics YOLO11 与其前身相比引入了多项重大进步。主要改进包括:

  • 增强的特征提取:YOLO11采用改进的主干和颈部架构,增强了特征提取能力,以实现更精确的目标检测。
  • 优化的效率和速度:精细的架构设计和优化的训练管道可提供更快的处理速度,同时保持准确性和性能之间的平衡。
  • 使用更少的参数获得更高的精度:YOLO11m 在 COCO 数据集上实现了更高的平均精度(mAP),参数比 YOLOv8m 少 22%,从而在不影响精度的情况下提高计算效率。
  • 跨环境适应性:YOLO11可以跨各种环境部署,包括边缘设备、云平台和支持NVIDIA GPU的系统。
  • 支持的任务范围广泛:YOLO11 支持多种计算机视觉任务,例如对象检测、实例分割、图像分类、姿态估计和定向对象检测 (OBB)

【测试环境】

windows10 x64

ultralytics==8.3.0

torch==2.3.1

【改进流程】

1. 新增biformer.py实现骨干网络(代码太多,核心模块源码请参考改进步骤.docx)
2. 文件修改步骤

修改tasks.py文件

创建模型配置文件

yolo11-biformer.yaml内容如下:

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 2 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'# [depth, width, max_channels]n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPss: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPsm: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPsl: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPsx: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs# YOLO11n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4- [-1, 2, C3k2, [256, False, 0.25]]- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8- [-1, 2, C3k2, [512, False, 0.25]]- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16- [-1, 2, C3k2, [512, True]]- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32- [-1, 2, C3k2, [1024, True]]- [-1, 1, SPPF, [1024, 5]] # 9- [-1, 2, C2PSA, [1024]] # 10# YOLO11n head
head:- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [[-1, 6], 1, Concat, [1]] # cat backbone P4- [-1, 2, C3k2, [512, False]] # 13- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [[-1, 4], 1, Concat, [1]] # cat backbone P3- [-1, 2, C3k2, [256, False]] # 16 (P3/8-small)- [-1, 1, BiLevelRoutingAttention, []] # 17 (P3/8-small)  小目标检测层输出位置增加注意力机制- [-1, 1, Conv, [256, 3, 2]]- [[-1, 13], 1, Concat, [1]] # cat head P4- [-1, 2, C3k2, [512, False]] # 20 (P4/16-medium)- [-1, 1, BiLevelRoutingAttention, []] # 21 (P4/16-medium) 中目标检测层输出位置增加注意力机制- [-1, 1, Conv, [512, 3, 2]]- [[-1, 10], 1, Concat, [1]] # cat head P5- [-1, 2, C3k2, [1024, True]] # 24 (P5/32-large)- [-1, 1, BiLevelRoutingAttention, []] # 25 (P5/32-large) 大目标检测层输出位置增加注意力机制# 具体在那一层用注意力机制可以根据自己的数据集场景进行选择。# 如果你自己配置注意力位置注意from[17, 21, 25]位置要对应上对应的检测层!- [[17, 21, 25], 1, Detect, [nc]] # Detect(P3, P4, P5)

3. 验证集成

使用新建的yaml配置文件启动训练任务:

from ultralytics import YOLOif __name__ == '__main__':model = YOLO('yolo11-MobileNetV1.yaml')  # build from YAML and transfer weights# Train the modelresults = model.train(data='coco128.yaml',epochs=100, imgsz=640, batch=8, device=0, workers=1, save=True,resume=False)

成功集成后,训练日志中将显示biformer模块的初始化信息,表明注意力机制已正确加载到模型中。

【训练说明】

第一步:首先安装好yolov11必要模块,可以参考yolov11框架安装流程,然后卸载官方版本pip uninstall ultralytics,最后安装改进的源码pip install .
第二步:将自己数据集按照dataset文件夹摆放,要求文件夹名字都不要改变
第三步:打开train.py修改必要的参数,最后执行python train.py即可训练

【提供文件】

├── [官方源码]ultralytics-8.3.0.zip
├── train/
│   ├── coco128.yaml
│   ├── dataset/
│   │   ├── train/
│   │   │   ├── images/
│   │   │   │   ├── firc_pic_1.jpg
│   │   │   │   ├── firc_pic_10.jpg
│   │   │   │   ├── firc_pic_11.jpg
│   │   │   │   ├── firc_pic_12.jpg
│   │   │   │   ├── firc_pic_13.jpg
│   │   │   ├── labels/
│   │   │   │   ├── classes.txt
│   │   │   │   ├── firc_pic_1.txt
│   │   │   │   ├── firc_pic_10.txt
│   │   │   │   ├── firc_pic_11.txt
│   │   │   │   ├── firc_pic_12.txt
│   │   │   │   ├── firc_pic_13.txt
│   │   │   └── labels.cache
│   │   └── val/
│   │       ├── images/
│   │       │   ├── firc_pic_100.jpg
│   │       │   ├── firc_pic_81.jpg
│   │       │   ├── firc_pic_82.jpg
│   │       │   ├── firc_pic_83.jpg
│   │       │   ├── firc_pic_84.jpg
│   │       ├── labels/
│   │       │   ├── firc_pic_100.txt
│   │       │   ├── firc_pic_81.txt
│   │       │   ├── firc_pic_82.txt
│   │       │   ├── firc_pic_83.txt
│   │       │   ├── firc_pic_84.txt│   │       └── labels.cache
│   ├── train.py
│   ├── yolo11-biformer.yaml
│   └── 训练说明.txt
├── 【改进源码】ultralytics-8.3.0.zip
├── 改进原理.docx
└── 改进流程.docx

 【常见问题汇总】
问:为什么我训练的模型epoch显示的map都是0或者map精度很低?
回答:由于源码改进过,因此不能直接从官方模型微调,而是从头训练,这样学习特征能力会很弱,需要训练很多epoch才能出现效果。此外由于改进的源码框架并不一定能够保证会超过官方精度,而且也有可能会存在远远不如官方效果,甚至精度会很低。这说明改进的框架并不能取得很好效果。所以说对于框架改进只是提供一种可行方案,至于改进后能不能取得很好map还需要结合实际训练情况确认,当然也不排除数据集存在问题,比如数据集比较单一,样本分布不均衡,泛化场景少,标注框不太贴合标注质量差,检测目标很小等等原因
【重要说明】
我们只提供改进框架一种方案,并不保证能够取得很好训练精度,甚至超过官方模型精度。因为改进框架,实际是一种比较复杂流程,包括框架原理可行性,训练数据集是否合适,训练需要反正验证以及同类框架训练结果参数比较,这个是十分复杂且漫长的过程。

http://www.xdnf.cn/news/642619.html

相关文章:

  • 优秀技术文档的构建与优化之道
  • Typescript学习教程,从入门到精通,TypeScript 进阶语法知识点及案例代码详解(13)
  • QStandardItemModel的函数和信号介绍
  • Java单例模式:懒汉模式详解
  • MyBatis-Plus一站式增强组件MyBatis-Plus-kit:打造更优雅的通用CRUD解决方案
  • 15 dart类(get,set,静态,继承,抽象,接口,混入)
  • AUTOSAR图解==>AUTOSAR_SRS_Libraries
  • java数组,ArrayList,LinkedList
  • win主机,Ubuntu,IMX6ULL开发板网络通讯
  • 神经网络学习-Day35
  • 麒麟V10 SP1 2303使用记录(一)安装google浏览器
  • 提高:RMQ问题:【例 3】与众不同
  • 固态硬盘颗粒类型、选型与应用场景深度解析
  • 基于PySide6与pycatia的CATIA几何阵列生成器开发实践
  • 5.25 note
  • uni-app学习笔记十二-vue3中创建组件
  • ISO 20000体系:需求管理与容量管理含义与解释
  • 以下是修改Java版《我的世界》字体的分步指南(DeepSeek)
  • uni-app学习笔记十一--vu3 watch和watchEffect侦听
  • IntelliJ IDEA 中配置 Gradle 的分发方式distribution
  • jvm垃圾回收
  • github项目:llm-guard
  • 函数[x]和{x}在数论中的应用
  • 李沐《动手学深度学习》| 4.4 模型的选择、过拟合和欠拟合.md
  • STL的map和set(关联式容器深度解析)
  • 2025第三届黄河流域网络安全技能挑战赛--Crypto--WriteUp
  • 网络原理入门详解:从零理解互联网如何工作
  • Modbus协议原理
  • 【Hive 开发进阶】窗口函数深度解析:OVER/NTILE/RANK 实战案例与行转列高级技巧
  • Day02