当前位置: 首页 > news >正文

【NLP 68、R-BERT】

为什么划掉你的名字,为什么不敢与你对视

                                                                —— 25.4.21

一、R-BERT:基于BERT的关系抽取模型 

        R-BERT(Relation BERT)是一种用于关系抽取(Relation Extraction)任务的模型,它结合了预训练语言模型 BERT(Bidirectional Encoder Representations from Transformers)的强大语言理解能力,在关系抽取领域取得了较好的效果。

        输入一段文本,在两个特殊的实体前后加上两对不同的token,用token强调不同的实体

1.模型结构与设计

Ⅰ、核心思想

        在BERT基础上显式标记实体位置,结合句子全局信息和实体局部信息进行关系分类。

Ⅱ、输入设计

① 实体标记

        在实体前后插入特殊符号(如 “实体1” 和 “#实体2#”),帮助BERT定位实体位置。

② 输出特征

        提取BERT输出的三部分向量——[CLS]句子向量、实体1的平均向量、实体2的平均向量。

Ⅲ、分类模块

① 特征融合

        将三个向量分别通过Dropout、Tanh激活和全连接层,拼接后输入分类器。

② 共享权重

        实体1和实体2的特征处理层共享参数,减少模型复杂度。


2.计算方式与训练策略

Ⅰ、实体向量计算

        对实体对应的隐藏状态进行平均池化,生成实体表征。

Ⅱ、损失函数

        多类交叉熵损失,适用于关系分类任务(如SemEval-2010 Task 8数据集中的9类关系)。

Ⅲ、关键实验结论

        移除实体标记符会使F1值下降1.27%,仅使用[CLS]向量则下降1.26%,证明显式标记实体的重要性


3.应用场景

Ⅰ、人物关系分类

        例如识别“亲戚”“上下级”等社会关系。

Ⅱ、医学文本分析

        提取疾病与症状之间的关联。

Ⅲ、事件抽取

        识别新闻中的实体间因果关系。


4.关键技术优势

Ⅰ、实体感知

        通过特殊符号和向量融合增强模型对实体的关注。

Ⅱ、高效微调

        基于预训练BERT快速适配关系分类任务,减少数据需求。

Ⅲ、高准确率

        在SemEval-2010 Task 8数据集上F1值达89.25%,接近当时SOTA水平。 


二、模型对比与总结

维度KG-BERTR-BERT
核心任务知识图谱补全(三元组分类、链接预测)关系抽取(实体间语义关系分类)
输入设计三元组序列化,融合实体描述文本显式标记实体位置,提取实体向量
关键技术BERT+知识图谱融合、负样本生成实体标记符、多特征融合
应用领域问答系统、推荐系统、语义搜索社交网络分析、医学文本挖掘、事件抽取
性能指标在WN11、FB15K等数据集达到SOTASemEval-2010 Task 8的F1值89.25%

三、代码示例

import torch
from transformers import BertTokenizer, BertModel# 加载预训练的BERT模型和分词器,修改为bert-base-chinese
tokenizer = BertTokenizer.from_pretrained('bert-base-chinese')
bert_model = BertModel.from_pretrained('bert-base-chinese')# 示例输入
text = "苹果公司是一家科技公司,史蒂夫·乔布斯是其创始人。"
head_entity = "苹果公司"
tail_entity = "史蒂夫·乔布斯"# 添加实体标记
text_with_entities = text.replace(head_entity, f"<e1>{head_entity}</e1>").replace(tail_entity, f"<e2>{tail_entity}</e2>")# 分词
inputs = tokenizer(text_with_entities, return_tensors='pt')# 通过BERT模型进行编码
outputs = bert_model(**inputs)# 提取实体和上下文表示
e1_start = inputs['input_ids'][0].tolist().index(tokenizer.convert_tokens_to_ids('<e1>')) + 1
e1_end = inputs['input_ids'][0].tolist().index(tokenizer.convert_tokens_to_ids('</e1>'))
e2_start = inputs['input_ids'][0].tolist().index(tokenizer.convert_tokens_to_ids('<e2>')) + 1
e2_end = inputs['input_ids'][0].tolist().index(tokenizer.convert_tokens_to_ids('</e2>'))e1_representation = torch.mean(outputs.last_hidden_state[0, e1_start:e1_end, :], dim=0)
e2_representation = torch.mean(outputs.last_hidden_state[0, e2_start:e2_end, :], dim=0)
context_representation = outputs.last_hidden_state[0, 0, :]  # [CLS]标记的表示# 拼接表示
combined_representation = torch.cat([e1_representation, e2_representation, context_representation], dim=0)# 假设这里有一个全连接层进行关系分类
num_relations = 3  # 假设有3种关系
classification_layer = torch.nn.Linear(combined_representation.size(0), num_relations)
logits = classification_layer(combined_representation)
probs = torch.softmax(logits, dim=0)# 预测的关系类别
predicted_relation = torch.argmax(probs).item()print(f"预测的关系类别: {predicted_relation}")

http://www.xdnf.cn/news/61471.html

相关文章:

  • Spark,HDFS客户端操作 2
  • WWW和WWWForm类
  • Linux的基础的操作指令
  • 基础服务系列-Windows10 安装AnacondaJupyter
  • MCP案例—客户端和服务端
  • LintCode第192题-通配符匹配
  • VLAN间通讯技术
  • uniapp云打包针对谷歌视频图片权限的解决方案
  • 实验八 版本控制
  • 大模型训练与推理:存储需求的差异及高性能全闪存储的效能提升
  • Vue2集成ElementUI实现左侧菜单导航
  • 【EasyPan】MySQL主键与索引核心作用解析
  • 《AI大模型应知应会100篇》第30篇:大模型进行数据分析的方法与局限:从实战到边界探索
  • 论文笔记-arXiv2025-FilterLLM
  • 免疫定量分析仪:精准医疗时代的诊断利器与市场蓝海
  • 富文本编辑器
  • ubuntu--字体设置
  • 深度图可视化
  • 4月谷歌新政 | Google Play今年对“数据安全”的管控将全面升级!
  • 极狐GitLab 自定义实例级项目模板功能介绍
  • Unreal如何使用后处理材质实现一个黑屏渐变效果
  • 人类行为的原动力是自我保存-来自ChatGPT
  • 【SpringBoot】HttpServletRequest获取使用及失效问题(包含@Async异步执行方案)
  • 使用IntersectionObserver实现目标元素可见度的交互
  • web原生API AbortController网络请求取消方法使用介绍:防止按钮重复点击提交得最佳方案
  • 数码管静态显示一位字符(STC89C52单片机)
  • QT 的.pro 转 vsproject 工程
  • C++ 2025 展望:现代编程需求与新兴技术驱动下的变革
  • 目标检测篇---R-CNN梳理
  • 多线程出bug不知道如何调试?java线程几种常见状态