操作符的详解
1. 操作符的分类
2. 二进制和进制转换
3. 原码、反码、补码
4. 移位操作符
5. 位操作符:&、|、^、~
6. 单目操作符
7. 逗号表达式
8. 下标访问[]、函数调用()
9. 结构成员访问操作符
10. 操作符的属性:优先级、结合性
11. 表达式求值
1. 操作符的分类
• 算术操作符: + 、- 、* 、/ 、%
• 移位操作符: << >>
• 位操作符: & | ^
• 赋值操作符: = 、+= 、 -= 、 *= 、 /= 、%= 、<<= 、>>= 、&= 、|= 、^=
• 单⽬操作符: !、++ 、--、&、*、+、-、~ 、sizeof、(类型)
• 关系操作符: > 、>= 、< 、<= 、 == 、 !=
• 逻辑操作符: && 、||
• 条件操作符: ? :
• 逗号表达式: ,
• 下标引⽤: [ ]
• 函数调⽤: ( )
• 结构成员访问: . 、->
上述的操作符,我们已经讲过算术操作符、赋值操作符、逻辑操作符、条件操作符和部分的单目操作符,今天继续介绍⼀部分,操作符中有⼀些操作符和⼆进制有关系,我们先铺垫⼀下⼆进制的和进制转换的知识。
2. 二进制和进制转换
其实我们经常能听到 2进制、8进制、10进制、16进制这样的讲法,那是什么意思呢? 其实2进制、8进制、10进制、16进制是数值的不同表表形式而已。 比如:数值15的各种进制的表示形式:
15的2进制:1111
15的8进制:17
15的10进制:15
15的16进制:F
//16进制的数值之前写:0x
//8进制的数值之前写:0
我们重点介绍⼀下⼆进制:
首先我们还是得从10进制讲起,其实10进制是我们生活中经常使用的,我们已经形成了很多常识:
• 10进制中满10进1
• 10进制的数字每⼀位都是0~9的数字组成
其实⼆进制也是⼀样的
• 2进制中满2进1
• 2进制的数字每⼀位都是0~1的数字组成
那么 1101 就是⼆进制的数字了。
2.1 2进制转10进制
其实10进制的123表⽰的值是⼀百⼆⼗三,为什么是这个值呢?其实10进制的每⼀位是有权重的,10
进制的数字从右向左是个位、⼗位、百位....,分别每⼀位的权重是 10 0 , 10 1 , 10 2 ...
如下图:

10进制123每⼀位权重的理解
2进制和10进制是类似的,只不过2进制的每⼀位的权重,从右向左是: 2^0 , 2^ 1 , 2^ 2 .....如果是2进制的1101,该怎么理解呢?
2进制1101每⼀位权重的理解
2.1.1 10进制转2进制数字
10进制125转换为2进制:1111101
2.2 2进制转8进制和16进制
2.2.1 2进制转8进制
8进制的数字每⼀位是 0~7 的,0~7 的数字,各自写成2进制,最多有3个2进制位就足够了,比如7的二进制是111,所以在2进制转8进制数的时候,从2进制序列中右边低位开始向左每3个2进制位会换算⼀个8进制位,剩余不够3个2进制位的直接换算。 如:2进制的 01101011,换成8进制:0153,0开头的数字,会被当做8进制。
2.2.2 2进制转16进制
16进制的数字每⼀位是0~9, a~f 的,0~9, a~f的数字,各自写成2进制,最多有4个2进制位就足够了,比如 f 的⼆进制是1111,所以在2进制转16进制数的时候,从2进制序列中右边低位开始向左每4个2进 制位会换算⼀个16进制位,剩余不够4个⼆进制位的直接换算。如:2进制的01101011,换成16进制:0x6b,16进制表示的时候前⾯加 0x

3. 原码、反码、补码
整数的2进制表示方法有三种,即原码、反码和补码
有符号整数的三种表示方法均有符号位和数值位两部分,2进制序列中,最高位的1位是被当做符号
位,剩余的都是数值位。符号位都是用0表示“正”,用1表示“负”。

正整数的原、反、补码都相同。
负整数的三种表示方法各不相同。
原码:直接将数值按照正负数的形式翻译成⼆进制得到的就是原码。
反码:将原码的符号位不变,其他位依次按位取反就可以得到反码。
补码:反码+1就得到补码。
补码得到原码也是可以使用:取反,+1的操作。
无符号整数的三种 2 进制表示相同,没有符号位,每⼀位都是数值位。

对于整形来说:数据存放内存中其实存放的是补码。
4. 移位操作符
<< 左移操作符
>> 右移操作符
注:移位操作符的操作数只能是整数。
4.1 左移操作符
移位规则:左边抛弃、右边补0
#include <stdio.h>
int main()
{int num = 10;int n = num << 1;printf("n = %d\n", n);printf("num = %d\n", num);return 0;
}
4.2 右移操作符
移位规则:首先右移运算分两种:
1. 逻辑右移:左边用0填充,右边丢弃
2. 算术右移:左边用原该值的符号位填充,右边丢弃
#include <stdio.h>
int main()
{int num = 10;int n = num >> 1;printf("n = %d\n", n);printf("num = %d\n", num);return 0;
}
警告⚠️ :对于移位运算符,不要移动负数位,这个是标准未定义的。
int num = 10;
num >> -1;//err
5. 位操作符:&、|、^、~
位操作符有:
& // 按位与
| // 按位或
^ // 按位异或
~ // 按位取反
注:他们的操作数必须是整数。
#include <stdio.h>
int main()
{
int num1 = -3;
int num2 = 5;
printf("%d\n", num1 & num2);
printf("%d\n", num1 | num2);
printf("%d\n", num1 ^ num2);
printf("%d\n", ~0);
return 0;
}
练习一:不能创建临时变量(第三个变量),实现两个整数的交换。
#include <stdio.h>
int main()
{
int a = 10;
int b = 20;
a = a ^ b;
b = a ^ b;
a = a ^ b;
printf("a = %d b = %d\n", a, b);
return 0;
}
练习二: 编写代码实现:求⼀个整数存储在内存中的⼆进制中1的个数。
#include <stdio.h>
int main()
{int num = 10;int count = 0;//计数while(num){if(num % 2 == 1)count++;num = num / 2;}printf("⼆进制中1的个数 = %d\n", count);return 0;
}//⽅法2:
#include <stdio.h>
int main()
{int num = -1;int i = 0;int count = 0;//计数for(i = 0; i < 32; i++){if( num & (1 << i) )count++;}printf("⼆进制中1的个数 = %d\n", count);return 0;
}//⽅法3:
#include <stdio.h>
int main()
{int num = -1;int i = 0;int count = 0;//计数while(num){count++;num = num & (num - 1);}printf("⼆进制中1的个数 = %d\n", count);return 0;
}
练习三: ⼆进制位置0或者置1
- 13的2进制序列: 00000000000000000000000000001101
- 将第5位置为1后:00000000000000000000000000011101
- 将第5位再置为0:00000000000000000000000000001101
#include <stdio.h>
int main()
{int a = 13;a = a | (1 << 4);printf("a = %d\n", a);a = a & ~(1 << 4);printf("a = %d\n", a);return 0;
}
6. 单目操作符
单目操作符有这些:
!、 ++ 、 -- 、 & 、 * 、 + 、 - 、 ~ 、 sizeof 、 ( 类型 )
单目操作符的特点是只有⼀个操作数,在单目操作符中只有 & 和 * 没有介绍,这2个操作符,我们放在学习指针的时候学习。
7. 逗号表达式
exp1, exp2, exp3, …expN
逗号表达式,就是用逗号隔开的多个表达式。
逗号表达式,从左向右依次执行。整个表达式的结果是最后⼀个表达式的结果。
//代码1
int a = 1;
int b = 2;
int c = (a > b, a = b + 10, a, b = a + 1);//逗号表达式
c是多少?
//代码2
if (a = b + 1, c = a / 2, d > 0)
//代码3
a = get_val();
count_val(a);
while (a > 0)
{//处理//...a = get_val();count_val(a);
}
如果使⽤逗号表达式,改写:
while (a = get_val(), count_val(a), a>0)
{//处理
}
8. 下标访问[]、函数调用()
8.1 [ ] 下标引用操作符
操作数:⼀个数组名 + ⼀个索引值(下标)
int arr[10];//创建数组
arr[9] = 10;//实⽤下标引⽤操作符。
[ ]的两个操作数是arr和9。
8.2 函数调用操作符
接受⼀个或者多个操作数:第⼀个操作数是函数名,剩余的操作数就是传递给函数的参数。
#include <stdio.h>
void test1()
{printf("hehe\n");
}void test2(const char *str)
{printf("%s\n", str);
}
int main()
{test1(); //这⾥的()就是作为函数调⽤操作符。test2("hello bit.");//这⾥的()就是函数调⽤操作符。return 0;
}
9. 结构成员访问操作符
9.1 结构体
C语言已经提供了内置类型,如:char、short、int、long、float、double等,但是只有这些内置类
型还是不够的,假设我想描述学⽣,描述⼀本书,这时单⼀的内置类型是不行的。
描述⼀个学生需要名字、年龄、学号、身高、体重等;
描述⼀本书需要书名、作者、出版社、定价等。C语言为了解决这个问题,增加了结构体这种自定义的 数据类型,让程序员可以自己创造适合的类型。
9.1.1 结构的声明
struct tag
{member-list;
}variable-list;
//描述⼀个学⽣:
struct Stu
{char name[20];//名字int age;//年龄char sex[5];//性别char id[20];//学号
}; //分号不能丢
9.1.2 结构体变量的定义和初始化
#define _CRT_SECURE_NO_WARNINGS 1
//代码1:变量的定义
struct Point
{int x;int y;
}p1; //声明类型的同时定义变量p1
struct Point p2; //定义结构体变量p2
//代码2:初始化。
struct Point p3 = { 10, 20 };
struct Stu //类型声明
{char name[15];//名字int age; //年龄
};
struct Stu s1 = { "zhangsan", 20 };//初始化
struct Stu s2 = { .age = 20, .name = "lisi" };//指定顺序初始化
//代码3
struct Node
{int data;struct Point p;struct Node* next;
}n1 = { 10, {4,5}, NULL }; //结构体嵌套初始化
struct Node n2 = { 20, {5, 6}, NULL };//结构体嵌套初始化
9.2 结构成员访问操作符
9.2.1 结构体成员的直接访问
结构体成员的直接访问是通过点操作符(.)访问的。点操作符接受两个操作数。如下所示:
#include <stdio.h>
struct Point
{int x;int y;
}p = { 1,2 };
int main()
{printf("x: %d y: %d\n", p.x, p.y);return 0;
}
使用方式:结构体变量.成员名
9.2.2 结构体成员的间接访问
有时候我们得到的不是⼀个结构体变量,⽽是得到了⼀个指向结构体的指针。如下所示:
#include <stdio.h>
struct Point
{int x;int y;
};
int main()
{struct Point p = { 3, 4 };struct Point* ptr = &p;ptr->x = 10;ptr->y = 20;printf("x = %d y = %d\n", ptr->x, ptr->y);return 0;
}
使用方式:结构体指针->成员名
举例:
#include <stdio.h>
#include <string.h>
struct Stu
{char name[15];//名字int age; //年龄
};
void print_stu(struct Stu s)
{printf("%s %d\n", s.name, s.age);
}
void set_stu(struct Stu* ps)
{strcpy(ps->name, "李四");ps->age = 28;
}
int main()
{struct Stu s = { "张三", 20 };print_stu(s);set_stu(&s);print_stu(s);return 0;
}
10. 操作符的属性:优先级、结合性
C语言的操作符有2个重要的属性:优先级、结合性,这两个属性决定了表达式求值的计算顺序。
10.1 优先级
优先级指的是,如果⼀个表达式包含多个运算符,哪个运算符应该优先执行。各种运算符的优先级是不⼀样的。
3 + 4 * 5;
上面示例中,表达式 3 + 4 * 5 里面 既有加法运算符( + ),又有乘法运算符( * )。由于乘法
的优先级高于加法,所以会先计算 4 * 5 ,而不是先计算 3 + 4 。
10.2 结合性
如果两个运算符优先级相同,优先级没办法确定先计算哪个了,这时候就看结合性了,则根据运算符是左结合,还是右结合,决定执行顺序。⼤部分运算符是左结合(从左到右执行),少数运算符是右结合(从右到左执行),币如赋值运算符( = )。
5 * 6 / 2;
上面示例中, * 和 / 的优先级相同,它们都是左结合运算符,所以从左到右执行,先计算 5 * 6 ,
再计算 / 2 。
运算符的优先级顺序很多,下面是部分运算符的优先级顺序(按照优先级从高到低排列),建议大概记住这些操作符的优先级就行,其他操作符在使用的时候查看下面表格就可以了。
• 圆括号( () )
• 自增运算符( ++ ),⾃减运算符( -- )
• 单目运算符( + 和 - )
• 乘法( * ),除法( / )
• 加法( + ),减法( - )
• 关系运算符( < 、 > 等)
• 赋值运算符( = )
由于圆括号的优先级最高,可以使用它改变其他运算符的优先级。

11. 表达式求值
11.1 整型提升
C语言中整型算术运算总是至少以缺省(默认)整型类型的精度来进行的。
为了获得这个精度,表达式中的字符和短整型操作数在使用之前被转换为普通整型,这种转换称为整型提升。
//实例1
char a,b,c;
...
a = b + c;
b和c的值被提升为普通整型,然后再执行加法运算。 加法运算完成之后,结果将被截断,然后再存储于a中。
如何进行整体提升呢?
1. 有符号整数提升是按照变量的数据类型的符号位来提升的
2. 无符号整数提升,高位补0
//负数的整形提升
char c1 = -1;
变量c1的⼆进制位(补码)中只有8个⽐特位:
1
2
3
1111111
因为 char 为有符号的 char
所以整形提升的时候,⾼位补充符号位,即为1
提升之后的结果是:
11111111111111111111111111111111
//正数的整形提升
char c2 = 1;
变量c2的⼆进制位(补码)中只有8个⽐特位:
00000001
因为 char 为有符号的 char
所以整形提升的时候,⾼位补充符号位,即为0
提升之后的结果是:
00000000000000000000000000000001
//⽆符号整形提升,⾼位补0
11.2 算术转换
如果某个操作符的各个操作数属于不同的类型,那么除非其中⼀个操作数的转换为另⼀个操作数的类型,否则操作就无法进行。下面的层次体系称为寻常算术转换。
long double
double
float
unsigned long int
long int
unsigned int
int
如果某个操作数的类型在上面这个列表中排名靠后,那么首先要转换为另外⼀个操作数的类型后执行运算。
11.3总结
即使有了操作符的优先级和结合性,我们写出的表达式依然有可能不能通过操作符的属性确定唯⼀的计算路径,那这个表达式就是存在潜在风险的,建议不要写出特别复杂的表达式。
完犊子