如何设置线程池大小
一、线程池原理
开始优化之前,我们先来看看线程池的实现原理,有助于你更好地理解后面的内容。在HotSpot VM的线程模型中,Java线程被一对一映射为内核线程。Java在使用线程执行程序时,需要创建一个内核线程;当该Java线程被终止时,这个内核线程也会被回收。因此Java线程的创建与销毁将会消耗一定的计算机资源,从而增加系统的性能开销。除此之外,大量创建线程同样会给系统带来性能问题,因为内存和CPU资源都将被线程抢占,如果处理不当,就会发生内存溢出、CPU使用率超负荷等问题。为了解决上述两类问题,Java提供了线程池概念,对于频繁创建线程的业务场景,线程池可以创建固定的线程数量,并且在操作系统底层,轻量级进程将会把这些线程映射到内核。线程池可以提高线程复用,又可以固定最大线程使用量,防止无限制地创建线程。当程序提交一个任务需要一个线程时,会去线程池中查找是否有空闲的线程,若有,则直接使用线程池中的线程工作,若没有,会去判断当前已创建的线程数量是否超过最大线程数量,如未超过,则创建新线程,如已超过,则进行排队等待或者直接抛出异常。
二、线程池框架Executor
Java最开始提供了ThreadPool实现了线程池,为了更好地实现用户级的线程调度,更有效地帮助开发人员进行多线程开发,Java提供了一套Executor框架。这个框架中包括了ScheduledThreadPoolExecutor和ThreadPoolExecutor两个核心线程池。前者是用来定时执行任务,后者是用来执行被提交的任务。鉴于这两个线程池的核心原理是一样的,下面我们就重点看看ThreadPoolExecutor类是如何实现线程池的。
Executors实现了以下四种类型的ThreadPoolExecutor
Executors利用工厂模式实现的四种线程池,我们在使用的时候需要结合生产环境下的实际场景。不过我不太推荐使用它们,因为选择使用Executors提供的工厂类,将会忽略很多线程池的参数设置,工厂类一旦选择设置默认参数,就很容易导致无法调优参数设置,从而产生性能问题或者资源浪费。这里我建议你使用ThreadPoolExecutor自我定制一套线程池。进入四种工厂类后,我们可以发现除了newScheduledThreadPool类,其它类均使用了ThreadPoolExecutor类进行实现,你可以通过以下代码简单看下该方法
public ThreadPoolExecutor(int corePoolSize,//线程池的核心线程数量int maximumPoolSize,//线程池的最大线程数long keepAliveTime,//当线程数大于核心线程数时,多余的空闲线程存活的最长时间TimeUnit unit,//时间单位BlockingQueue<Runnable> workQueue,//任务队列,用来储存等待执行任务的队列ThreadFactory threadFactory,//线程工厂,用来创建线程,一般默认即可RejectedExecutionHandler handler) //拒绝策略,当提交的任务过多而不能及时处理时,我们可以定制策略来处理任务
我们还可以通过下面这张图来了解下线程池中各个参数的相互关系:
通过上图,我们发现线程池有两个线程数的设置,一个为核心线程数,一个为最大线程数。在创建完线程池之后,默认情况下,线程池中并没有任何线程,等到有任务来才创建线程去执行任务。但有一种情况排除在外,就是调用prestartAllCoreThreads()或者prestartCoreThread()方法的话,可以提前创建等于核心线程数的线程数量,这种方式被称为预热,在抢购系统中就经常被用到。当创建的线程数等于 corePoolSize 时,提交的任务会被加入到设置的阻塞队列中。当队列满了,会创建线程执行任务,直到线程池中的数量等于maximumPoolSize。当线程数量已经等于maximumPoolSize时, 新提交的任务无法加入到等待队列,也无法创建非核心线程直接执行,我们又没有为线程池设置拒绝策略,这时线程池就会抛出RejectedExecutionException异常,即线程池拒绝接受这个任务。当线程池中创建的线程数量超过设置的corePoolSize,在某些线程处理完任务后,如果等待keepAliveTime时间后仍然没有新的任务分配给它,那么这个线程将会被回收。线程池回收线程时,会对所谓的“核心线程”和“非核心线程”一视同仁,直到线程池中线程的数量等于设置的corePoolSize参数,回收过程才会停止。即使是corePoolSize线程,在一些非核心业务的线程池中,如果长时间地占用线程数量,也可能会影响到核心业务的线程池,这个时候就需要把没有分配任务的线程回收掉。我们可以通过allowCoreThreadTimeOut设置项要求线程池:将包括“核心线程”在内的,没有任务分配的所有线程,在等待keepAliveTime时间后全部回收掉。
我们可以通过下面这张图来了解下线程池的线程分配流程:
三、计算线程数量
一般多线程执行的任务类型可以分为CPU密集型和I/O密集型,根据不同的任务类型,我们计算线程数的方法也不一样。
CPU密集型任务:这种任务消耗的主要是CPU资源,可以将线程数设置为N(CPU核心数)+1,比CPU核心数多出来的一个线程是为了防止线程偶发的缺页中断,或者其它原因导致的任务暂停而带来的影响。一旦任务暂停,CPU就会处于空闲状态,而在这种情况下多出来的一个线程就可以充分利用CPU的空闲时间。当线程数量太小,同一时间大量请求将被阻塞在线程队列中排队等待执行线程,此时CPU没有得到充分利用;当线程数量太大,被创建的执行线程同时在争取CPU资源,又会导致大量的上下文切换,从而增加线程的执行时间,影响了整体执行效率。通过测试可知,4~6个线程数是最合适的。
I/O密集型任务:这种任务应用起来,系统会用大部分的时间来处理I/O交互,而线程在处理I/O的时间段内不会占用CPU来处理,这时就可以将CPU交出给其它线程使用。因此在I/O密集型任务的应用中,我们可以多配置一些线程,具体的计算方法是2N。
看完以上两种情况下的线程计算方法,你可能还想说,在平常的应用场景中,我们常常遇不到这两种极端情况,那么碰上一些常规的业务操作,比如,通过一个线程池实现向用户定时推送消息的业务,我们又该如何设置线程池的数量呢?
此时我们可以参考以下公式来计算线程数:
线程数=N(CPU核数)*(1+WT(线程等待时间)/ST(线程时间运行时间))
我们可以通过JDK自带的工具VisualVM来查看WT/ST比例,以下例子是基于运行纯CPU运算的例子,我们可以看到:
WT(线程等待时间)= 36788ms [线程运行总时间] - 36788ms[ST(线程时间运行时间)]= 0
线程数=N(CPU核数)*(1+ 0 [WT(线程等待时间)]/36788ms[ST(线程时间运行时间)])= N(CPU核数)
这跟我们之前通过CPU密集型的计算公式N+1所得出的结果差不多
综合来看,我们可以根据自己的业务场景,从“N+1”和“2N”两个公式中选出一个适合的,计算出一个大概的线程数量,之后通过实际压测,逐渐往“增大线程数量”和“减小线程数量”这两个方向调整,然后观察整体的处理时间变化,最终确定一个具体的线程数量。