当前位置: 首页 > news >正文

LLaMA-Factory:环境准备

一、硬件和系统

  • 操作系统: Ubuntu 24.04.2 LTS(64位)
  • GPU: NVIDIA RTX 4090 笔记本 GPU,16GB显存
  • CPU: 建议高性能多核 CPU(如 Intel i7/i9 或 AMD Ryzen 7/9)以支持数据预处理,我的是32核。
  • RAM: 至少 32GB,推荐 64GB 以支持大型模型加载和数据处理,我的是64GB内存。
  • 存储: NVMe SSD(至少 500GB 可用空间),用于存储模型权重、数据集和缓存文件,我的SSD2TB。
  • 网络: 稳定的科学的网络连接,用于下载依赖和模型

注意: RTX 4090 笔记本 GPU 的 16GB VRAM 限制了可运行的模型大小。建议使用 4-bit 或 8-bit 量化模型(如 LLaMA 3.1 8B 或 13B)以适应 VRAM 限制。

二、安装NVIDIA驱动和CUDA

RTX 4090 需要最新的 NVIDIA 驱动和 CUDA 工具包以支持 GPU 加速。安装前检查机器配置,要适配自己的机器配置才行。

1、检查GPU识别

lspci | grep -i nvidia
# 输出应显示类似 "NVIDIA Corporation Device" 的信息。
# 如果没有输出,可能需要检查硬件连接或 BIOS 设置。
01:00.0 VGA compatible controller: NVIDIA Corporation GN21-X11 (rev a1)
01:00.1 Audio device: NVIDIA Corporation Device 22bb (rev a1)

2、检查推荐的驱动

ubuntu-drivers devices## 输出内容找到类似 "driver   : nvidia-driver-575 - third-party non-free recommended" 的信息
vendor   : NVIDIA Corporation
model    : GN21-X11
driver   : nvidia-driver-535-open - distro non-free
driver   : nvidia-driver-575 - third-party non-free recommended
driver   : nvidia-driver-535-server-open - distro non-free
driver   : nvidia-driver-570-server-open - distro non-free

输出会显示推荐的驱动版本(如 nvidia-driver-575)。注意recommended信息。

3、安装推荐的驱动

sudo apt install nvidia-driver-575 -y

4、重启系统后验证驱动安装

sudo reboot
nvidia-smi
+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 570.133.20             Driver Version: 570.133.20     CUDA Version: 12.8     |
|-----------------------------------------+------------------------+----------------------+

输出应显示 RTX 4090 的信息和驱动版本(如 550.XX)。

⚠️注意:安装推荐的驱动时自动安装的是CUDA运行时环境(包含基础库和头文件),但不会包含完整的CUDA Toolkit开发工具链(如nvcc编译器)。如需完整开发环境仍需单独安装。

nvidia-smi  # 确认驱动版本和CUDA兼容性
ls /usr/local  # 查看已安装的CUDA版本目录

假如我的驱动版本和CUDA版本分别是:Driver Version: 570.133.20 CUDA Version: 12.8 ,再查看已安装的CUDA版本目录,假如根据我的目录结构(已存在cuda-12.9),安装CUDA 12.8时需注意以下关键点:


‌1. 版本共存机制‌

  • CUDA支持多版本共存,不同版本会安装到独立目录(如/usr/local/cuda-12.8/usr/local/cuda-12.9
  • 默认符号链接/usr/local/cuda会指向最后安装的版本,可通过ls -l /usr/local/cuda查看当前激活版本

2.安装CUDA12.8

# 添加NVIDIA官方仓库(Ubuntu 24.04)
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2404/x86_64/cuda-keyring_1.1-1_all.deb
sudo dpkg -i cuda-keyring_1.1-1_all.deb
sudo apt update# 安装指定版本
sudo apt install cuda-12-8

3.切换版本

# 修改符号链接指向目标版本
sudo rm /usr/local/cuda
sudo ln -s /usr/local/cuda-12.8 /usr/local/cuda# 更新环境变量
echo 'export PATH=/usr/local/cuda-12.8/bin:$PATH' >> ~/.bashrc
echo 'export LD_LIBRARY_PATH=/usr/local/cuda-12.8/lib64:$LD_LIBRARY_PATH' >> ~/.bashrc
source ~/.bashrc

4.冲突排查

  • 驱动兼容性‌:CUDA 12.8要求驱动版本≥570.41.03,你的驱动570.133.20已满足
  • 路径冲突‌:若安装失败,检查/usr/local/cuda-12.8是否已存在,可手动删除旧目录
  • 工具链验证‌:安装后运行nvcc --versionnvidia-smi确认版本对应关系

⚠️注意

  • 同时只能有一个CUDA版本通过/usr/local/cuda符号链接激活,但编译时可显式指定路径(如I/usr/local/cuda-12.9/include
  • 深度学习框架(如PyTorch)通常依赖特定CUDA版本,需匹配其要求
  • 如果需要可以使用update-alternatives管理多版本,自己查一下使用方法。
  • 另外根据我的驱动版本(570.133.20)和当前环境,NVIDIA驱动570.133.20同时支持CUDA 12.8和12.923,安装CUDA 12.9无需升级驱动。‌
    • 若项目明确要求CUDA 12.8,需保持当前版本
    • 若需Blackwell GPU(如RTX 5090)或最新特性,推荐CUDA 12.94
    • 灵活一些,再查看/usr/local/cuda-12.8发现已经安装好了,我就不切换cuda版本了。

至此,GPU驱动和CUDA工具包都安装完成了。

三、安装Python和依赖

LLaMA-Factory 基于 Python,需要安装适当的 Python 版本和依赖。

1、安装python

Ubuntu 24.04 默认包含 Python 3.12。确认版本:

python3 --version

⚠️注意:如果需要特定版本(如 3.10),可以自行安装。另外最好使用虚拟环境,用venv、uv或者conda都可以,避免以来冲突,可以自行检索搭建。

2、安装PyTorch

为 RTX 4090 安装支持 CUDA 的 PyTorch:

pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu123

验证 PyTorch 是否识别 GPU:

记得切换环境,比如我用的conda,切换到指定环境conda activate llama_factory

python -c "import torch; print(torch.cuda.is_available())"

输出应为 True。


至此python环境准备完毕。这与平常python环境安装无异,很简单。

四、安装LLaMA-Factory

LLaMA-Factory 是一个用于高效微调 LLaMA 模型的框架。

⚠️注意:要科学上网

1、克隆LLaMA-Factory仓库,或者其他办法,把源码弄过来,进入LLaMA-Factory目录。

git clone https://github.com/hiyouga/LLaMA-Factory.git
cd LLaMA-Factory

2、安装依赖

安装LLama-Factory所需依赖,⚠️注意切换到虚拟环境,后续就不再提示了。

pip install -r requirements.txt
  • 注意: 如果遇到依赖冲突,可尝试升级 pip:

    pip install --upgrade pip

3、安装额外工具

为支持量化(如 4-bit 或 8-bit)和高效推理,安装以下工具:

pip install bitsandbytes
pip install transformers>=4.41.0
pip install accelerate

至此LLaMA-Factory框架应该已经安装完成,它提供了直观的web界面,可以通过llamafactory-cli webui 启动访问。接下来就是《准备模型和数据集》。

在这里插入图片描述

http://www.xdnf.cn/news/482797.html

相关文章:

  • 大语言模型核心技术解析:从训练到部署的全链路实践
  • Python web 开发 Flask HTTP 服务
  • leetcode 2901. 最长相邻不相等子序列 II 中等
  • 测试工程师如何学会Kubernetes(k8s)容器知识
  • 05-SpringBoot
  • 链表的中间结点数据结构oj题(力扣876)
  • BM25 算法与关键词提取在向量数据库中的实践优化
  • tomcat一闪而过,按任意键继续以及控制台中文乱码问题
  • 基于javaweb的SSM驾校管理系统设计与实现(源码+文档+部署讲解)
  • 遥感图像非法采矿矿区识别分割数据集labelme格式1818张3类别
  • R语言如何解决导出pdf中文不显示的问题
  • 苹果新一代车载系统CarPlay Ultra来袭,全屏接管+ChatGPT助力,智能驾驶要“起飞”
  • 钉钉报销与金蝶付款单系统对接技术揭秘
  • ACM模式用Scanner和System.out超时的解决方案和原理
  • 锐捷交换机STP环路日志信息解读
  • NLG的可解释性困局:可视化工具Captum在生成模型中的应用
  • 【学习心得】Jupyter 如何在conda的base环境中其他虚拟环境内核
  • Spring Boot三层架构设计模式
  • 风控贷中策略笔记
  • CSS:颜色的三种表示方式
  • 汽车装配又又又升级,ethernetip转profinet进阶跃迁指南
  • mongodb用systemctl启动code=killed, signal=ABRT
  • 关于 Web安全:1. Web 安全基础知识
  • 全球泳装与沙滩装市场深度洞察:从功能性需求到可持续时尚的蜕变(2025-2031)
  • Elasticsearch-kibana索引操作
  • 归并排序:分治思想的优雅实现
  • 电子电路:被动电子元件都有哪些?
  • AI神经网络降噪算法在语音通话产品中的应用优势与前景分析
  • 轨迹误差评估完整流程总结(使用 evo 工具)
  • 【踩坑记录】transformers 加载 checkpoint 继续训练