当前位置: 首页 > news >正文

OpenHarmony平台驱动开发(十七),UART

OpenHarmony平台驱动开发(十七)


UART

概述

功能简介

UART指异步收发传输器(Universal Asynchronous Receiver/Transmitter),是通用串行数据总线,用于异步通信。该总线双向通信,可以实现全双工传输。

两个UART设备的连接示意图如下,UART与其他模块一般用2线(图1)或4线(图2)相连,它们分别是:

  • TX:发送数据端,和对端的RX相连。

  • RX:接收数据端,和对端的TX相连。

  • RTS:发送请求信号,用于指示本设备是否准备好,可接受数据,和对端CTS相连。

  • CTS:允许发送信号,用于判断是否可以向对端发送数据,和对端RTS相连。

图 1 2线UART设备连接示意图

2线UART设备连接示意图

图 2 4线UART设备连接示意图

4线UART设备连接示意图

UART通信之前,收发双方需要约定好一些参数:波特率、数据格式(起始位、数据位、校验位、停止位)等。通信过程中,UART通过TX发送给对端数据,通过RX接收对端发送的数据。当UART接收缓存达到预定的门限值时,RTS变为不可发送数据,对端的CTS检测到不可发送数据,则停止发送数据。

基本概念

  • 异步通信

    异步通信中,数据通常以字符或者字节为单位组成字符帧传送。字符帧由发送端逐帧发送,通过传输线被接收设备逐帧接收。发送端和接收端可以由各自的时钟来控制数据的发送和接收,这两个时钟源彼此独立,互不同步。异步通信以一个字符为传输单位,通信中两个字符间的时间间隔是不固定的,然而在同一个字符中的两个相邻位代码间的时间间隔是固定的。

  • 全双工传输(Full Duplex)

    此通信模式允许数据在两个方向上同时传输,它在能力上相当于两个单工通信方式的结合。全双工可以同时进行信号的双向传输。

运作机制

在HDF框架中,UART接口适配模式采用独立服务模式(如图3所示)。在这种模式下,每一个设备对象会独立发布一个设备服务来处理外部访问,设备管理器收到API的访问请求之后,通过提取该请求的参数,达到调用实际设备对象的相应内部方法的目的。独立服务模式可以直接借助HDF设备管理器的服务管理能力,但需要为每个设备单独配置设备节点,增加内存占用。

独立服务模式下,核心层不会统一发布一个服务供上层使用,因此这种模式下驱动要为每个控制器发布一个服务,具体表现为:

  • 驱动适配者需要实现HdfDriverEntry的Bind钩子函数以绑定服务。

  • device_info.hcs文件中deviceNode的policy字段为1或2,不能为0。

UART模块各分层作用:

  • 接口层提供打开UART设备、UART设备读取指定长度数据、UART设备写入指定长度数据、设置UART设备波特率、获取设UART设备波特率、设置UART设备属性、获取UART设备波特率、设置UART设备传输模式、关闭UART设备的接口。

  • 核心层主要提供UART控制器的创建、移除以及管理的能力,通过钩子函数与适配层交互。

  • 适配层主要是将钩子函数的功能实例化,实现具体的功能。

图 3 UART独立服务模式结构图

UART独立服务模式结构图

开发指导

场景介绍

UART模块应用比较广泛,主要用于实现设备之间的低速串行通信,例如输出打印信息,当然也可以外接各种模块,如GPS、蓝牙等。当驱动开发者需要将UART设备适配到OpenHarmony时,需要进行UART驱动适配。下文将介绍如何进行UART驱动适配。

接口说明

为了保证上层在调用UART接口时能够正确的操作UART控制器,核心层在//drivers/hdf_core/framework/support/platform/include/uart/uart_core.h中定义了以下钩子函数,驱动适配者需要在适配层实现这些函数的具体功能,并与钩子函数挂接,从而完成适配层与核心层的交互。

UartHostMethod定义:

struct UartHostMethod {int32_t (*Init)(struct UartHost *host);int32_t (*Deinit)(struct UartHost *host);int32_t (*Read)(struct UartHost *host, uint8_t *data, uint32_t size);int32_t (*Write)(struct UartHost *host, uint8_t *data, uint32_t size);int32_t (*GetBaud)(struct UartHost *host, uint32_t *baudRate);int32_t (*SetBaud)(struct UartHost *host, uint32_t baudRate);int32_t (*GetAttribute)(struct UartHost *host, struct UartAttribute *attribute);int32_t (*SetAttribute)(struct UartHost *host, struct UartAttribute *attribute);int32_t (*SetTransMode)(struct UartHost *host, enum UartTransMode mode);int32_t (*pollEvent)(struct UartHost *host, void *filep, void *table);
};

表 1 UartHostMethod结构体成员的回调函数功能说明

函数入参出参返回值功能
Inithost:结构体指针,核心层UART控制器HDF_STATUS相关状态初始化Uart设备
Deinithost:结构体指针,核心层UART控制器HDF_STATUS相关状态去初始化Uart设备
Readhost:结构体指针,核心层UART控制器
size:uint32_t类型,接收数据大小
data:uint8_t类型指针,接收的数据HDF_STATUS相关状态接收数据RX
Writehost:结构体指针,核心层UART控制器
data:uint8_t类型指针,传入数据
size:uint32_t类型,发送数据大小
HDF_STATUS相关状态发送数据TX
SetBaudhost:结构体指针,核心层UART控制器
baudRate:uint32_t类型,波特率传入值
HDF_STATUS相关状态设置波特率
GetBaudhost:结构体指针,核心层UART控制器baudRate:uint32_t类型指针,传出的波特率HDF_STATUS相关状态获取当前设置的波特率
GetAttributehost:结构体指针,核心层UART控制器attribute:结构体指针,传出的属性值(见uart_if.h中UartAttribute定义)HDF_STATUS相关状态获取设备uart相关属性
SetAttributehost:结构体指针,核心层UART控制器
attribute:结构体指针,属性传入值
HDF_STATUS相关状态设置设备UART相关属性
SetTransModehost:结构体指针,核心层UART控制器
mode:枚举值(见uart_if.h中UartTransMode定义),传输模式
HDF_STATUS相关状态设置传输模式
PollEventhost:结构体指针,核心层UART控制器
filep:void类型指针filep
table:void类型指针table
HDF_STATUS相关状态poll轮询机制

开发步骤

UART模块适配HDF框架包含以下四个步骤:

  • 实例化驱动入口

  • 配置属性文件

  • 实例化UART控制器对象

  • 驱动调试

开发实例

下方将基于Hi3516DV300开发板以//device/soc/hisilicon/common/platform/uart/uart_hi35xx.c驱动为示例,展示需要驱动适配者提供哪些内容来完整实现设备功能。

  1. 实例化驱动入口

    驱动入口必须为HdfDriverEntry(在hdf_device_desc.h中定义)类型的全局变量,且moduleName要和device_info.hcs中保持一致。HDF框架会将所有加载的驱动的HdfDriverEntry对象首地址汇总,形成一个类似数组的段地址空间,方便上层调用。

    一般在加载驱动时HDF会先调用Bind函数,再调用Init函数加载该驱动。当Init调用异常时,HDF框架会调用Release释放驱动资源并退出。

    UART驱动入口开发参考:

    struct HdfDriverEntry g_hdfUartDevice = {.moduleVersion = 1,.moduleName = "HDF_PLATFORM_UART",    // 【必要且与HCS文件中里面的moduleName匹配】.Bind = HdfUartDeviceBind,            // 挂接UART模块Bind实例化.Init = HdfUartDeviceInit,            // 挂接UART模块Init实例化.Release = HdfUartDeviceRelease,      // 挂接UART模块Release实例化
    };
    HDF_INIT(g_hdfUartDevice);                // 调用HDF_INIT将驱动入口注册到HDF框架中
    
  2. 配置属性文件

    完成驱动入口注册之后,需要在device_info.hcs文件中添加deviceNode信息,deviceNode信息与驱动入口注册相关。本例以两个UART控制器为例,如有多个器件信息,则需要在device_info.hcs文件增加对应的deviceNode信息,以及在uart_config.hcs文件中增加对应的器件属性。器件属性值与核心层UartHost成员的默认值或限制范围有密切关系,比如UART设备端口号,需要在uart_config.hcs文件中增加对应的器件属性。

    独立服务模式的特点是device_info.hcs文件中设备节点代表着一个设备对象,如果存在多个设备对象,则按需添加,注意服务名与驱动私有数据匹配的关键字名称必须唯一。其中各项参数如表2所示:

    表 2 device_info.hcs节点参数说明

    成员名
    policy驱动服务发布的策略,UART控制器具体配置为2,表示驱动对内核态和用户态都发布服务
    priority驱动启动优先级(0-200),值越大优先级越低。UART控制器具体配置为40
    permission驱动创建设备节点权限,UART控制器具体配置为0664
    moduleName驱动名称,UART控制器固定为HDF_PLATFORM_UART
    serviceName驱动对外发布服务的名称,UART控制器服务名设置为HDF_PLATFORM_UART_X,X代表UART控制器编号
    deviceMatchAttr驱动私有数据匹配的关键字,UART控制器设置为hisilicon_hi35xx_uart_X ,X代表UART控制器编号
    • device_info.hcs 配置参考:

      在//vendor/hisilicon/hispark_taurus/hdf_config/device_info/device_info.hcs文件中添加deviceNode描述。

      root {device_info {match_attr = "hdf_manager";platform :: host {hostName = "platform_host";priority = 50;device_uart :: device {device0 :: deviceNode {policy = 1;                                   // 驱动服务发布的策略,policy大于等于1(用户态可见为2,仅内核态可见为1)。priority = 40;                                // 驱动启动优先级permission = 0644;                            // 驱动创建设备节点权限moduleName = "HDF_PLATFORM_UART";             // 驱动名称,该字段的值必须和驱动入口结构的moduleName值一致。serviceName = "HDF_PLATFORM_UART_0";          // 驱动对外发布服务的名称,必须唯一,必须要按照HDF_PLATFORM_UART_X的格式,X为UART控制器编号。deviceMatchAttr = "hisilicon_hi35xx_uart_0";  // 驱动私有数据匹配的关键字,必须和驱动私有数据配置表中的match_attr值一致。}device1 :: deviceNode {policy = 2;permission = 0644;priority = 40;moduleName = "HDF_PLATFORM_UART"; serviceName = "HDF_PLATFORM_UART_1";deviceMatchAttr = "hisilicon_hi35xx_uart_1";}......                                            // 如果存在多个UART设备时【必须】添加节点,否则不用}}}
      }
      
    • uart_config.hcs 配置参考:

      在//device/soc/hisilicon/hi3516dv300/sdk_liteos/hdf_config/uart/uart_config.hcs文件配置器件属性,其中配置参数如下:

      root {platform {template uart_controller {                   // 配置模板,如果下面节点使用时继承该模板,则节点中未声明的字段会使用该模板中的默认值match_attr = "";num = 0;                                 // 【必要】端口号baudrate = 115200;                       // 【必要】波特率,数值可按需填写fifoRxEn = 1;                            // 【必要】使能接收FIFOfifoTxEn = 1;                            // 【必要】使能发送FIFOflags = 4;                               // 【必要】标志信号regPbase = 0x120a0000;                   // 【必要】地址映射需要interrupt = 38;                          // 【必要】中断号iomemCount = 0x48;                       // 【必要】地址映射需要}controller_0x120a0000 :: uart_controller {match_attr = "hisilicon_hi35xx_uart_0";  // 【必要】必须和device_info.hcs中对应的设备的deviceMatchAttr值一致}controller_0x120a1000 :: uart_controller {num = 1;baudrate = 9600;regPbase = 0x120a1000;interrupt = 39;match_attr = "hisilicon_hi35xx_uart_1";}......                                       // 如果存在多个UART设备时【必须】添加节点,否则不用}
      }
      

      需要注意的是,新增uart_config.hcs配置文件后,必须在产品对应的hdf.hcs文件中将其包含如下语句所示,否则配置文件无法生效。

      例如:本例中uart_config.hcs所在路径为device/soc/hisilicon/hi3516dv300/sdk_liteos/hdf_config/uart/uart_config.hcs,则必须在产品对应的hdf.hcs中添加如下语句:

      #include "../../../../device/soc/hisilicon/hi3516dv300/sdk_liteos/hdf_config/uart/uart_config.hcs" // 配置文件相对路径
      
  3. 实例化UART控制器对象

    完成属性文件配置之后,下一步就是以核心层UartHost对象的初始化为核心,包括驱动适配者自定义结构体(传递参数和数据),实例化UartHost成员UartHostMethod(让用户可以通过接口来调用驱动底层函数),实现HdfDriverEntry成员函数(Bind、Init、Release)。

    • 驱动适配者自定义结构体参考。

      从驱动的角度看,驱动适配者自定义结构体是参数和数据的载体,而且uart_config.hcs文件中的数值会被HDF读入并通过DeviceResourceIface来初始化结构体成员,一些重要数值也会传递给核心层对象,例如端口号。

      struct UartPl011Port {                       // 驱动适配者自定义管脚描述结构体int32_t enable;unsigned long physBase;                  // 物理地址uint32_t irqNum;                         // 中断号uint32_t defaultBaudrate;                // 默认波特率uint32_t flags;                          // 标志信号,下面三个宏与之相关
      #define PL011_FLG_IRQ_REQUESTED    (1 << 0)
      #define PL011_FLG_DMA_RX_REQUESTED (1 << 1)
      #define PL011_FLG_DMA_TX_REQUESTED (1 << 2)struct UartDmaTransfer *rxUdt;           // DMA传输相关struct UartDriverData *udd;
      };
      struct UartDriverData {                      // 数据传输相关的结构体uint32_t num;                            // 端口号uint32_t baudrate;                       // 波特率(可设置)struct UartAttribute attr;               // 数据位、停止位等传输属性相关struct UartTransfer *rxTransfer;         // 缓冲区相关,可理解为FIFO结构wait_queue_head_t wait;                  // 条件变量相关的排队等待信号int32_t count;                           // 数据数量int32_t state;                           // UART控制器状态
      #define UART_STATE_NOT_OPENED 0
      #define UART_STATE_OPENING    1
      #define UART_STATE_USEABLE    2
      #define UART_STATE_SUSPENDED  3uint32_t flags;                          // 状态标志
      #define UART_FLG_DMA_RX       (1 << 0)
      #define UART_FLG_DMA_TX       (1 << 1)
      #define UART_FLG_RD_BLOCK     (1 << 2)RecvNotify recv;                         // 函数指针类型,指向串口数据接收函数struct UartOps *ops;                     // 自定义函数指针结构体void *private;                           // 私有数据
      };// UartHost是核心层控制器结构体,其中的成员在Init函数中会被赋值。
      struct UartHost {struct IDeviceIoService service;         // 驱动服务struct HdfDeviceObject *device;          // 驱动设备对象uint32_t num;                            // 端口号OsalAtomic atom;                         // 原子量void *priv;                              // 私有数据struct UartHostMethod *method;           // 回调函数
      };
      
    • UartHost成员回调函数结构体UartHostMethod的实例化。

      // uart_hi35xx.c 中的示例:钩子函数的实例化
      struct UartHostMethod g_uartHostMethod = {.Init = Hi35xxInit,                     // 初始化.Deinit = Hi35xxDeinit,                 // 去初始化.Read = Hi35xxRead,                     // 接收数据.Write = Hi35xxWrite,                   // 发送数据.SetBaud = Hi35xxSetBaud,               // 设置波特率.GetBaud = Hi35xxGetBaud,               // 获取波特率.SetAttribute = Hi35xxSetAttribute,     // 设置设备属性.GetAttribute = Hi35xxGetAttribute,     // 获取设备属性.SetTransMode = Hi35xxSetTransMode,     // 设置传输模式.pollEvent = Hi35xxPollEvent,           // 轮询
      };
      
    • Bind函数开发参考。

      入参:

      HdfDeviceObject:HDF框架给每一个驱动创建的设备对象,用来保存设备相关的私有数据和服务接口。

      返回值:

      HDF_STATUS相关状态(表3为部分展示,如需使用其他状态,可参考//drivers/hdf_core/interfaces/inner_api/utils/hdf_base.h中HDF_STATUS中HDF_STATUS定义)。

      表 3 HDF_STATUS相关状态说明

      状态(值)问题描述
      HDF_ERR_INVALID_OBJECT控制器对象非法
      HDF_ERR_MALLOC_FAIL内存分配失败
      HDF_ERR_INVALID_PARAM参数非法
      HDF_ERR_IOI/O 错误
      HDF_SUCCESS初始化成功
      HDF_FAILURE初始化失败

      函数说明:

      初始化自定义结构体对象,初始化UartHost成员。

      //uart_hi35xx.c
      static int32_t HdfUartDeviceBind(struct HdfDeviceObject *device)
      {......return (UartHostCreate(device) == NULL) ? HDF_FAILURE : HDF_SUCCESS; // 【必须】调用核心层函数UartHostCreate
      }// uart_core.c核心层UartHostCreate函数说明
      struct UartHost *UartHostCreate(struct HdfDeviceObject *device)
      {struct UartHost *host = NULL;                                        // 新建UartHost......                                                                  host = (struct UartHost *)OsalMemCalloc(sizeof(*host));              // 分配内存......host->device = device;                                               // 【必要】使HdfDeviceObject与UartHost可以相互转化的前提device->service = &(host->service);                                  // 【必要】使HdfDeviceObject与UartHost可以相互转化的前提host->device->service->Dispatch = UartIoDispatch;                    // 为service成员的Dispatch方法赋值OsalAtomicSet(&host->atom, 0);                                       // 原子量初始化或者原子量设置host->priv = NULL;host->method = NULL;return host;
      }
      
    • Init函数开发参考。

      入参:

      HdfDeviceObject:HDF框架给每一个驱动创建的设备对象,用来保存设备相关的私有数据和服务接口。

      返回值:

      HDF_STATUS相关状态。

      函数说明:

      初始化自定义结构体对象,初始化UartHost成员,调用核心层UartAddDev函数,完成UART控制器的添加,接入VFS。

      int32_t HdfUartDeviceInit(struct HdfDeviceObject *device)
      {int32_t ret;struct UartHost *host = NULL;HDF_LOGI("%s: entry", __func__);......host = UartHostFromDevice(device);                                           // 通过service成员后强制转为UartHost,赋值是在Bind函数中......                                    ret = Hi35xxAttach(host, device);                                            // 完成UartHost对象的初始化,见下......                                   host->method = &g_uartHostMethod;                                            // UartHostMethod的实例化对象的挂载return ret;
      }
      // 完成UartHost对象的初始化。
      static int32_t Hi35xxAttach(struct UartHost *host, struct HdfDeviceObject *device)
      {int32_t ret;struct UartDriverData *udd = NULL;                                           // udd和port对象是驱动适配者自定义的结构体对象,可根据需要实现相关功能struct UartPl011Port *port = NULL;......// 【必要】步骤【1】~【7】主要实现对udd对象的实例化赋值,然后赋值给核心层UartHost对象。udd = (struct UartDriverData *)OsalMemCalloc(sizeof(*udd));                  // 【1】......port = (struct UartPl011Port *)OsalMemCalloc(sizeof(struct UartPl011Port));  // 【2】......udd->ops = Pl011GetOps();                                                    // 【3】设备开启、关闭、属性设置、发送操作等函数挂载。udd->recv = PL011UartRecvNotify;                                             // 【4】数据接收通知函数(条件锁机制)挂载udd->count = 0;                                                              // 【5】port->udd = udd;                                                             // 【6】使UartPl011Port与UartDriverData可以相互转化的前提ret = UartGetConfigFromHcs(port, device->property);                          // 将HdfDeviceObject的属性传递给驱动适配者自定义结构体,用于相关操作,示例代码见下......udd->private = port;                                                         // 【7】host->priv = udd;                                                            // 【必要】使UartHost与UartDriverData可以相互转化的前提host->num = udd->num;                                                        // 【必要】UART设备号UartAddDev(host);                                                            // 【必要】核心层uart_dev.c中的函数,作用:注册一个字符设备节点到vfs,这样从用户态可以通过这个虚拟文件节点访问UART  return HDF_SUCCESS;
      }static int32_t UartGetConfigFromHcs(struct UartPl011Port *port, const struct DeviceResourceNode *node)
      {uint32_t tmp, regPbase, iomemCount;struct UartDriverData *udd = port->udd;struct DeviceResourceIface *iface = DeviceResourceGetIfaceInstance(HDF_CONFIG_SOURCE); ......// 通过请求参数提取相应的值,并赋值给驱动适配者自定义的结构体。if (iface->GetUint32(node, "num", &udd->num, 0) != HDF_SUCCESS) {HDF_LOGE("%s: read busNum fail", __func__);return HDF_FAILURE;}......return 0;
      }
      
    • Release函数开发参考。

      入参:

      HdfDeviceObject:HDF框架给每一个驱动创建的设备对象,用来保存设备相关的私有数据和服务接口。

      返回值:

      无。

      函数说明:

      该函数需要在驱动入口结构体中赋值给Release接口,当HDF框架调用Init函数初始化驱动失败时,可以调用Release释放驱动资源,该函数中需包含释放内存和删除控制器等操作。

      icon-note.gif

       说明:
      所有强制转换获取相应对象的操作前提是在Init函数中具备对应赋值的操作。

      void HdfUartDeviceRelease(struct HdfDeviceObject *device)
      {struct UartHost *host = NULL;...host = UartHostFromDevice(device);           // 这里有HdfDeviceObject到UartHost的强制转化,通过service成员,赋值见Bind函数。...                                          if (host->priv != NULL) {                    Hi35xxDetach(host);                      // 驱动适配自定义的内存释放函数,见下。}                                            UartHostDestroy(host);                       // 调用核心层函数释放host
      }static void Hi35xxDetach(struct UartHost *host)
      {struct UartDriverData *udd = NULL;struct UartPl011Port *port = NULL;...udd = host->priv;                            // 这里有UartHost到UartDriverData的转化...                                          UartRemoveDev(host);                         // VFS注销port = udd->private;                         // 这里有UartDriverData到UartPl011Port的转化if (port != NULL) {                          if (port->physBase != 0) {               OsalIoUnmap((void *)port->physBase); // 地址反映射}OsalMemFree(port);udd->private = NULL;}OsalMemFree(udd);                            // 释放UartDriverDatahost->priv = NULL;
      }
      
  4. 驱动调试

    【可选】针对新增驱动程序,建议验证驱动基本功能,例如挂载后的信息反馈,数据传输的成功与否等。

http://www.xdnf.cn/news/442945.html

相关文章:

  • DFS算法的学习
  • PyTorch深度神经网络(前馈、卷积神经网络)
  • JVM调优实战
  • 面试--HTML
  • OpenCV CUDA模块中逐元素操作------逻辑运算
  • 代码随想录算法训练营第四十天
  • ubuntu24.04上安装NVIDIA driver+CUDA+cuDNN+Anaconda+Pytorch
  • Webpack其他插件
  • Emacs 折腾日记(二十三)——进一步提升编辑效率
  • Docker 疑难杂症解决指南:从入门到进阶的全面剖析
  • 第五章 LVGL 字库使用
  • 【测试】BUG
  • 深度理解指针(2)
  • map格式可以接收返回 fastjson2格式的数据 而不需要显示的转换
  • 占位符读取标准输入缓冲区规则
  • WEB安全--Java安全--CC1利用链
  • 生成式人工智能认证(GAI认证)官网 - 全国统一认证中文服务平台上线
  • [python] python中的魔法方法和属性
  • 【Python 异常处理】
  • 【c语言内存函数】
  • Kuka AI音乐AI音乐开发「人声伴奏分离」 —— 「Kuka Api系列|中文咬字清晰|AI音乐API」第6篇
  • 梯度优化提示词:模型生成精准回答的秘密
  • libmemcached库api接口讲解四
  • 反向搭理搭建于网络安全的分层关系讨论
  • 计算机网络-MPLS VPN基础概念
  • FlashInfer - 测试的GPU H100 SXM、A100 PCIe、RTX 6000 Ada、RTX 4090
  • 具身智能梳理以及展望
  • React Flow 简介:构建交互式流程图的最佳工具
  • 如何远程执行脚本不留痕迹
  • MCU ESP32-S3+SD NAND(贴片式T卡):智能皮电手环(GSR智能手环)性能与存储的深度评测