当前位置: 首页 > news >正文

卷积神经网络基础(六)

我们已经学习了误差反向传播法的好几种实例及其实现,现在我们可以开始构建神经网络了。

七、误差反向传播法的实现

本章我们通过已经实现的层来实现神经网络的构建。

7.1 神经网络学习的全貌图

前提:神经网络中有合适的权重和偏置,调整权重和偏置以便拟合训练数据的过程被称为学习,神经网络学习分为下面四个步骤:

1、minibatch

从训练数据中随机选择一部分数据

2、计算梯度

计算损失函数关于各个权重参数的梯度

3、更新参数

将权重参数沿梯度方向进行微小的更新

4、重复

重复步骤1、2和3.

而我们之前学习的误差反向传播法会在步骤2出现,我们之前是采用数值微分求得梯度,虽然计算简单,但耗费较多时间。误差反向传播法却可以高效地求出计算梯度。

7.2 误差反向传播法的神经网络实现

现在来进行神经网络的实现,这里把两层神经网络实现为TwoLayerNet。首先我们整理一下类的实例变量和方法:

类实例变量
类实现方法

这个类的实现会比较长,但内容和之前学习的算法有很多共同的地方,不同的就是这里使用了很多之前实现过的层。通过层的实现,获得识别结果的处理和计算梯度的处理只需通过层之间的传递就可以了。下面我们来实现这个类:

import sys,os
sys.path.append(os.pardir)
import numpy as np
from common.layers import *
from common.gradient import numerical_gradient
from collections import OrderedDictclass TwoLayerNet:def __init__(self, input_size, hidden_size, output_size,weight_init_std=0.01):# 初始化权重self.params = {}self.params['W1'] = weight_init_std * \np.random.randn(input_size, hidden_size)self.params['b1'] = np.zeros(hidden_size)self.params['W2'] = weight_init_std * \np.random.randn(hidden_size, output_size)self.params['b2'] = np.zeros(output_size)# 生成层self.layers = OrderedDict()self.layers['Affine1'] = \Affine(self.params['W1'], self.params['b1'])self.layers['Relu1'] = Relu()self.layers['Affine2'] = \Affine(self.params['W2'], self.params['b2'])self.lastLayer = SoftmaxWithLoss()def predict(self, x):for layer in self.layers.values():x = layer.forward(x)return x# x: 输入数据, t:监督数据def loss(self, x, t):y = self.predict(x)return self.lastLayer.forward(y, t)def accuracy(self, x, t):y = self.predict(x)y = np.argmax(y, axis=1)if t.ndim != 1 : t = np.argmax(t, axis=1)accuracy = np.sum(y == t) / float(x.shape[0])return accuracy# x: 输入数据, t:监督数据def numerical_gradient(self, x, t):loss_W = lambda W: self.loss(x, t)grads = {}grads['W1'] = numerical_gradient(loss_W, self.params['W1'])grads['b1'] = numerical_gradient(loss_W, self.params['b1'])grads['W2'] = numerical_gradient(loss_W, self.params['W2'])grads['b2'] = numerical_gradient(loss_W, self.params['b2'])return gradsdef gradient(self, x, t):# forwardself.loss(x, t)# backwarddout = 1dout = self.lastLayer.backward(dout)layers = list(self.layers.values())layers.reverse()for layer in layers:dout = layer.backward(dout)# 设定grads = {}grads['W1'] = self.layers['Affine1'].dWgrads['b1'] = self.layers['Affine1'].dbgrads['W2'] = self.layers['Affine2'].dWgrads['b2'] = self.layers['Affine2'].dbreturn grads

请注意这个实现中的粗体字代码部分,尤其是将神经网络的层保存为 OrderedDict这一点非常重要。OrderedDict是有序字典,“有序”是指它可以 记住向字典里添加元素的顺序。因此,神经网络的正向传播只需按照添加元 素的顺序调用各层的forward()方法就可以完成处理,而反向传播只需要按 照相反的顺序调用各层即可。因为Affine层和ReLU层的内部会正确处理正 向传播和反向传播,所以这里要做的事情仅仅是以正确的顺序连接各层,再按顺序(或者逆序)调用各层。

像这样通过将神经网络的组成元素以层的方式实现,可以轻松地构建神经网络。这个用层进行模块化的实现具有很大优点。因为想另外构建一个神 经网络(比如5层、10层、20层……的大的神经网络)时,只需像组装乐高 积木那样添加必要的层就可以了。之后,通过各个层内部实现的正向传播和 反向传播,就可以正确计算进行识别处理或学习所需的梯度。

http://www.xdnf.cn/news/327457.html

相关文章:

  • Python 运维脚本
  • AI系列:智能音箱技术简析
  • void*在c语言中什么意思(非常详细)
  • scanpy处理:使用自定义 python 函数读取百迈客空间转录组数据(百创智造S1000)
  • 深度学习:智能车牌识别系统(python)
  • htop筛选进程时,出现重复进程
  • 德州仪器技术干货 | 48V 集成式热插拔电子保险丝:为现代 AI 数据中心高效供电
  • Python案例实战《水果识别模型训练及调用》
  • Linux 内核学习(7) --- 字符设备驱动
  • eFish-SBC-RK3576工控板CAN接口测试操作指南
  • leetcode 3341. 到达最后一个房间的最少时间 I 中等
  • Unity_JK框架【3】 事件系统的简单使用示例
  • 169.多数元素
  • openstack虚拟机状态异常处理
  • java集合菜鸟教程
  • 从 CodeBuddy Craft 到 edgeone-pages-mcp 上线算命网站的一次完整体验分享
  • 多语言网站的 UX 陷阱与国际化实践陷阱清单
  • 前端面试每日三题 - Day 27
  • 【Python】os模块
  • 使用 Gradio + Qwen3 + vLLM 部署 Text2SQL 多表查询系统
  • 【Prometheus】深入解析 Prometheus 特殊标签 `__param_<name>`:动态抓取参数的艺术
  • Android 数据持久化之数据库存储 Room 框架
  • 50个精选DeepSeek指令
  • ifconfig statistics
  • springboot使用阿里云OSS实现文件上传
  • 云上玩转Qwen3系列之二:PAI-LangStudio搭建联网搜索和RAG增强问答应用
  • C++初阶 —— 类和对象
  • C++ 中的 `it->second` 和 `it.second`:迭代器与对象访问的微妙区别
  • 如何延长电脑使用寿命?
  • Cadence 高速系统设计流程及工具使用二