当前位置: 首页 > news >正文

深度学习篇---SENet网络结构

在 PyTorch 中实现 SENet(Squeeze-and-Excitation Networks),核心是实现它的 "通道注意力机制"—— 通过 SE 模块给每个特征通道分配重要性权重,增强有用特征、抑制无用特征。我们从最基础的 SE 模块开始,一步步嵌入到 ResNet 中(形成 SE-ResNet),确保你能理解每个环节的作用。

一、先明确 SENet 的核心结构

SENet 的本质是 "在现有 CNN 中嵌入 SE 模块",以经典的 SE-ResNet 为例,结构可以概括为:

输入图像 → 
初始卷积层 → 池化层 → 
多个残差块(每个残差块后嵌入SE模块) → 
全局平均池化 → 全连接层(输出类别)

其中,SE 模块(Squeeze-and-Excitation Module)是核心组件,由 "压缩→激励→重标定" 三步组成。

二、PyTorch 实现 SENet 的步骤

步骤 1:导入必要的库

import torch  # 核心库
import torch.nn as nn  # 神经网络层
import torch.optim as optim  # 优化器
from torch.utils.data import DataLoader  # 数据加载器
from torchvision import datasets, transforms  # 图像数据处理

步骤 2:实现核心组件 ——SE 模块

SE 模块是 SENet 的灵魂,包含三个关键步骤:压缩(Squeeze)、激励(Excitation)、重标定(Scale):

class SEBlock(nn.Module):def __init__(self, channel, reduction=16):super(SEBlock, self).__init__()# 1. 压缩(Squeeze):全局平均池化,将H×W×C压缩为1×1×Cself.avg_pool = nn.AdaptiveAvgPool2d(1)# 2. 激励(Excitation):两个全连接层,学习通道权重self.fc = nn.Sequential(# 降维:减少计算量(通道数从C→C/reduction)nn.Linear(channel, channel // reduction, bias=False),nn.ReLU(inplace=True),# 升维:恢复通道数(从C/reduction→C)nn.Linear(channel // reduction, channel, bias=False),nn.Sigmoid()  # 将权重压缩到0~1之间)def forward(self, x):b, c, _, _ = x.size()  # 获取批次大小b和通道数c# 压缩:全局平均池化 → 输出形状:(b, c, 1, 1)y = self.avg_pool(x)# 拉平成向量:(b, c)y = y.view(b, c)# 激励:学习权重 → 输出形状:(b, c),每个元素是对应通道的权重y = self.fc(y)# 调整形状:(b, c, 1, 1),方便后续广播乘法y = y.view(b, c, 1, 1)# 3. 重标定:将权重与原特征图相乘(通道级加权)return x * y  # 广播机制:每个通道的所有像素都乘以该通道的权重

参数解释

  • channel:输入特征图的通道数;
  • reduction:降维系数(论文中推荐 16),用于减少全连接层的计算量(如通道数 256→256/16=16)。

通俗理解

  • 压缩步骤:给每个通道打一个 "全局平均分"(比如 "猫眼睛" 通道得分高,"背景噪音" 通道得分低);
  • 激励步骤:根据平均分学习每个通道的 "重要性权重"(0~1 之间);
  • 重标定步骤:用权重调整原特征(重要通道放大,不重要通道缩小)。

步骤 3:实现 SE-ResNet 的残差块(嵌入 SE 模块)

SENet 通常基于 ResNet 改进,我们以 ResNet 的 "瓶颈残差块"(Bottleneck)为例,在其中嵌入 SE 模块:

class SEBottleneck(nn.Module):expansion = 4  # 残差块输出通道数是输入的4倍(ResNet瓶颈块的特性)def __init__(self, in_channels, out_channels, stride=1, downsample=None, reduction=16):super(SEBottleneck, self).__init__()# 1×1卷积:降维(减少计算量)self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, bias=False)self.bn1 = nn.BatchNorm2d(out_channels)# 3×3卷积:提取特征(主卷积层)self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)self.bn2 = nn.BatchNorm2d(out_channels)# 1×1卷积:升维(恢复通道数)self.conv3 = nn.Conv2d(out_channels, out_channels * self.expansion, kernel_size=1, stride=1, bias=False)self.bn3 = nn.BatchNorm2d(out_channels * self.expansion)self.relu = nn.ReLU(inplace=True)# 嵌入SE模块(在特征提取后、残差连接前)self.se = SEBlock(out_channels * self.expansion, reduction)# 下采样(当输入输出尺寸/通道不同时使用,确保残差连接维度匹配)self.downsample = downsampleself.stride = stridedef forward(self, x):identity = x  # 残差连接的捷径分支# 主分支:特征提取out = self.conv1(x)out = self.bn1(out)out = self.relu(out)out = self.conv2(out)out = self.bn2(out)out = self.relu(out)out = self.conv3(out)out = self.bn3(out)# 关键:通过SE模块对特征加权out = self.se(out)# 残差连接:主分支输出 + 捷径分支if self.downsample is not None:identity = self.downsample(x)  # 下采样调整捷径分支维度out += identityout = self.relu(out)return out

结构解释

  • 这是 ResNet 的 "瓶颈残差块"(1×1 Conv→3×3 Conv→1×1 Conv),在最后添加了 SE 模块;
  • SE 模块位于 "特征提取完成后、残差连接前",确保加权后的特征与捷径分支融合;
  • expansion=4表示输出通道数是中间 3×3 卷积通道数的 4 倍(如中间 3×3 用 64 通道,输出则为 256 通道)。

步骤 4:搭建 SE-ResNet 完整网络

以 SE-ResNet50 为例(50 层),由 4 个残差块组组成,每组分别包含 3、4、6、3 个 SEBottleneck:

class SEResNet(nn.Module):def __init__(self, block, layers, num_classes=1000, reduction=16):super(SEResNet, self).__init__()self.in_channels = 64  # 初始卷积后的通道数# 初始卷积层self.conv1 = nn.Conv2d(3, self.in_channels, kernel_size=7, stride=2, padding=3, bias=False)self.bn1 = nn.BatchNorm2d(self.in_channels)self.relu = nn.ReLU(inplace=True)self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)  # 尺寸减半# 4个残差块组(每个组的输出通道数翻倍)self.layer1 = self._make_layer(block, 64, layers[0], reduction=reduction)  # 输出通道:64×4=256self.layer2 = self._make_layer(block, 128, layers[1], stride=2, reduction=reduction)  # 输出通道:128×4=512self.layer3 = self._make_layer(block, 256, layers[2], stride=2, reduction=reduction)  # 输出通道:256×4=1024self.layer4 = self._make_layer(block, 512, layers[3], stride=2, reduction=reduction)  # 输出通道:512×4=2048# 分类部分self.avgpool = nn.AdaptiveAvgPool2d((1, 1))  # 全局平均池化self.fc = nn.Linear(512 * block.expansion, num_classes)  # 全连接层def _make_layer(self, block, out_channels, blocks, stride=1, reduction=16):"""创建一个残差块组"""downsample = None# 当步长>1或输入输出通道不同时,需要下采样调整捷径分支if stride != 1 or self.in_channels != out_channels * block.expansion:downsample = nn.Sequential(nn.Conv2d(self.in_channels, out_channels * block.expansion,kernel_size=1, stride=stride, bias=False),nn.BatchNorm2d(out_channels * block.expansion),)layers = []# 添加第一个残差块(可能需要下采样)layers.append(block(self.in_channels, out_channels, stride, downsample, reduction))self.in_channels = out_channels * block.expansion  # 更新输入通道数# 添加剩余的残差块(步长=1,不需要下采样)for _ in range(1, blocks):layers.append(block(self.in_channels, out_channels, reduction=reduction))return nn.Sequential(*layers)def forward(self, x):# 初始卷积和池化x = self.conv1(x)x = self.bn1(x)x = self.relu(x)x = self.maxpool(x)# 4个残差块组(每个块都包含SE模块)x = self.layer1(x)x = self.layer2(x)x = self.layer3(x)x = self.layer4(x)# 分类x = self.avgpool(x)x = x.view(x.size(0), -1)  # 拉平成向量x = self.fc(x)return x

SE-ResNet50 配置
通过layers=[3,4,6,3]定义 4 个残差块组的数量,总层数计算为:
3+4+6+3=16个残差块 × 3 层卷积 / 块 + 初始卷积层 + 全连接层 ≈ 50 层。

步骤 5:初始化 SE-ResNet50 模型

用上面定义的模块组装 SE-ResNet50:

def se_resnet50(num_classes=1000, reduction=16):"""创建SE-ResNet50模型"""return SEResNet(SEBottleneck, [3, 4, 6, 3], num_classes, reduction)

步骤 6:准备数据(用 CIFAR-10 演示)

SE-ResNet 适合高精度分类任务,我们用 CIFAR-10(10 类)演示,输入尺寸调整为 224×224:

# 数据预处理:缩放+裁剪+翻转+标准化
transform = transforms.Compose([transforms.Resize(256),  # 缩放为256×256transforms.RandomCrop(224),  # 随机裁剪成224×224transforms.RandomHorizontalFlip(),  # 数据增强transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])  # ImageNet标准化
])# 加载CIFAR-10数据集
train_dataset = datasets.CIFAR10(root='./data', train=True, download=True, transform=transform
)
test_dataset = datasets.CIFAR10(root='./data', train=False, download=True, transform=transform
)# 批量加载数据
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True, num_workers=4)
test_loader = DataLoader(test_dataset, batch_size=32, shuffle=False, num_workers=4)

步骤 7:初始化模型、损失函数和优化器

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# 初始化SE-ResNet50,输出10类(CIFAR-10)
model = se_resnet50(num_classes=10, reduction=16).to(device)criterion = nn.CrossEntropyLoss()  # 交叉熵损失
# 优化器:推荐用SGD+动量
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9, weight_decay=5e-4)

步骤 8:训练和测试函数

SE-ResNet 的训练逻辑与普通 ResNet 类似,由于 SE 模块计算量极小,训练速度几乎不受影响:

def train(model, train_loader, criterion, optimizer, epoch):model.train()for batch_idx, (data, target) in enumerate(train_loader):data, target = data.to(device), target.to(device)optimizer.zero_grad()  # 清空梯度output = model(data)   # 模型预测loss = criterion(output, target)  # 计算损失loss.backward()        # 反向传播optimizer.step()       # 更新参数# 打印进度if batch_idx % 50 == 0:print(f'Epoch {epoch}, Batch {batch_idx}, Loss: {loss.item():.6f}')def test(model, test_loader):model.eval()correct = 0total = 0with torch.no_grad():for data, target in test_loader:data, target = data.to(device), target.to(device)output = model(data)_, predicted = torch.max(output.data, 1)total += target.size(0)correct += (predicted == target).sum().item()print(f'Test Accuracy: {100 * correct / total:.2f}%')

步骤 9:开始训练和测试

SE-ResNet50 收敛速度与普通 ResNet50 相近,建议训练 30-50 轮:

for epoch in range(1, 31):train(model, train_loader, criterion, optimizer, epoch)test(model, test_loader)

在 CIFAR-10 上,SE-ResNet50 的准确率比普通 ResNet50 高 1-2%,体现了 SE 模块的特征增强效果。

三、完整代码总结

import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision import datasets, transforms# 1. 实现SE模块(Squeeze-and-Excitation)
class SEBlock(nn.Module):def __init__(self, channel, reduction=16):super(SEBlock, self).__init__()# 压缩:全局平均池化self.avg_pool = nn.AdaptiveAvgPool2d(1)# 激励:两个全连接层学习通道权重self.fc = nn.Sequential(nn.Linear(channel, channel // reduction, bias=False),nn.ReLU(inplace=True),nn.Linear(channel // reduction, channel, bias=False),nn.Sigmoid())def forward(self, x):b, c, _, _ = x.size()# 压缩:(b, c, h, w) → (b, c, 1, 1) → (b, c)y = self.avg_pool(x).view(b, c)# 激励:学习权重 → (b, c) → (b, c, 1, 1)y = self.fc(y).view(b, c, 1, 1)# 重标定:通道级加权return x * y# 2. 实现SE-ResNet的残差块(嵌入SE模块)
class SEBottleneck(nn.Module):expansion = 4  # 输出通道是中间通道的4倍def __init__(self, in_channels, out_channels, stride=1, downsample=None, reduction=16):super(SEBottleneck, self).__init__()self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False)self.bn1 = nn.BatchNorm2d(out_channels)self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=stride,padding=1, bias=False)self.bn2 = nn.BatchNorm2d(out_channels)self.conv3 = nn.Conv2d(out_channels, out_channels * self.expansion, kernel_size=1, bias=False)self.bn3 = nn.BatchNorm2d(out_channels * self.expansion)self.relu = nn.ReLU(inplace=True)self.se = SEBlock(out_channels * self.expansion, reduction)  # 嵌入SE模块self.downsample = downsampleself.stride = stridedef forward(self, x):identity = x# 主分支特征提取out = self.conv1(x)out = self.bn1(out)out = self.relu(out)out = self.conv2(out)out = self.bn2(out)out = self.relu(out)out = self.conv3(out)out = self.bn3(out)# SE模块加权out = self.se(out)# 残差连接if self.downsample is not None:identity = self.downsample(x)out += identityout = self.relu(out)return out# 3. 搭建SE-ResNet完整网络
class SEResNet(nn.Module):def __init__(self, block, layers, num_classes=1000, reduction=16):super(SEResNet, self).__init__()self.in_channels = 64# 初始卷积层self.conv1 = nn.Conv2d(3, self.in_channels, kernel_size=7, stride=2, padding=3, bias=False)self.bn1 = nn.BatchNorm2d(self.in_channels)self.relu = nn.ReLU(inplace=True)self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)# 4个残差块组self.layer1 = self._make_layer(block, 64, layers[0], reduction=reduction)self.layer2 = self._make_layer(block, 128, layers[1], stride=2, reduction=reduction)self.layer3 = self._make_layer(block, 256, layers[2], stride=2, reduction=reduction)self.layer4 = self._make_layer(block, 512, layers[3], stride=2, reduction=reduction)# 分类部分self.avgpool = nn.AdaptiveAvgPool2d((1, 1))self.fc = nn.Linear(512 * block.expansion, num_classes)def _make_layer(self, block, out_channels, blocks, stride=1, reduction=16):downsample = Noneif stride != 1 or self.in_channels != out_channels * block.expansion:downsample = nn.Sequential(nn.Conv2d(self.in_channels, out_channels * block.expansion,kernel_size=1, stride=stride, bias=False),nn.BatchNorm2d(out_channels * block.expansion),)layers = []layers.append(block(self.in_channels, out_channels, stride, downsample, reduction))self.in_channels = out_channels * block.expansionfor _ in range(1, blocks):layers.append(block(self.in_channels, out_channels, reduction=reduction))return nn.Sequential(*layers)def forward(self, x):x = self.conv1(x)x = self.bn1(x)x = self.relu(x)x = self.maxpool(x)x = self.layer1(x)x = self.layer2(x)x = self.layer3(x)x = self.layer4(x)x = self.avgpool(x)x = x.view(x.size(0), -1)x = self.fc(x)return x# 4. 初始化SE-ResNet50模型
def se_resnet50(num_classes=1000, reduction=16):return SEResNet(SEBottleneck, [3, 4, 6, 3], num_classes, reduction)# 5. 准备CIFAR-10数据
transform = transforms.Compose([transforms.Resize(256),transforms.RandomCrop(224),transforms.RandomHorizontalFlip(),transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])train_dataset = datasets.CIFAR10(root='./data', train=True, download=True, transform=transform
)
test_dataset = datasets.CIFAR10(root='./data', train=False, download=True, transform=transform
)train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True, num_workers=4)
test_loader = DataLoader(test_dataset, batch_size=32, shuffle=False, num_workers=4)# 6. 初始化模型、损失函数和优化器
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = se_resnet50(num_classes=10, reduction=16).to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9, weight_decay=5e-4)# 7. 训练函数
def train(model, train_loader, criterion, optimizer, epoch):model.train()for batch_idx, (data, target) in enumerate(train_loader):data, target = data.to(device), target.to(device)optimizer.zero_grad()output = model(data)loss = criterion(output, target)loss.backward()optimizer.step()if batch_idx % 50 == 0:print(f'Epoch {epoch}, Batch {batch_idx}, Loss: {loss.item():.6f}')# 8. 测试函数
def test(model, test_loader):model.eval()correct = 0total = 0with torch.no_grad():for data, target in test_loader:data, target = data.to(device), target.to(device)output = model(data)_, predicted = torch.max(output.data, 1)total += target.size(0)correct += (predicted == target).sum().item()print(f'Test Accuracy: {100 * correct / total:.2f}%')# 9. 开始训练和测试
for epoch in range(1, 31):train(model, train_loader, criterion, optimizer, epoch)test(model, test_loader)

四、关键知识点回顾

  1. SE 模块核心逻辑:通过 "压缩(全局平均池化)→激励(全连接层学习权重)→重标定(通道级加权)" 三步,让模型自动关注重要特征通道;
  2. 嵌入方式:SE 模块通常放在残差块的 "特征提取后、残差连接前",确保加权后的优质特征参与后续计算;
  3. 参数设置
    • reduction=16:降维系数,平衡计算量和性能(值越大,计算量越小,但可能损失精度);
    • SE-ResNet50 的layers=[3,4,6,3]:定义 4 个残差块组的数量,总层数约 50 层;
  4. 优势:计算量极小(额外参数仅 0.03%),兼容性强(可嵌入任何 CNN),精度提升明显(比普通 ResNet 高 1-2%)。

通过这段代码,你能亲手实现这个 "智能特征管家",感受注意力机制如何用极小代价提升模型性能!

http://www.xdnf.cn/news/1456561.html

相关文章:

  • 【C语言】第二课 基础语法
  • 【开题答辩全过程】以 基于微信小程序的宠物领养系统为例,包含答辩的问题和答案
  • 理解 C# `async` 的本质:从同步包装到状态机
  • 云手机与网络游戏相结合的优势?
  • AI大模型企业落地指南-笔记05
  • 【75】OpenCV C++实战篇——OpenCV 图像拼接、全景拼接(教程合集)
  • 【华为培训笔记】ASON原理
  • 关于嵌入式学习——嵌入式硬件3
  • 如何在MacOS上卸载并且重新安装Homebrew
  • 企业微信SCRM工具推荐:微盛AI·企微管家为什么是首选?
  • c#泛型公共类示例
  • Next.js App Router 中文件系统路由与页面跳转实践(以用户详情页面为例)
  • 1688拍立淘接口对接实战案例
  • Playwright-ui自动化工具
  • 如何设置PPTX的默认打开应用为PowerPoint
  • ​​AI生成PPT工具推荐,从此以后再也不用担心不会做PPT了​​
  • Effective Python 第10条 - 用赋值表达式减少重复代码
  • 股价暴跌后扔出 “王炸”,美团 LongCat 大模型到底是续命还是真有料?
  • Linux网络服务——基础设置
  • 【Kubernetes】知识点4
  • 吐槽一下福昕pdf阅读器高级专业版
  • git命令常用指南
  • openEuler2403安装部署Kafbat
  • 用遗传算法破解一元函数最大值问题:从原理到 MATLAB 实现
  • 关于多Agent协作框架的讨论:以产品经理工作流为例对比Sub Agent与AutoGen
  • 标注工具labelimg使用简介
  • 02-Media-4-mp4muxer.py 录制视频并保存为MP4文件的示例
  • 员工离职导致研发文档遗失的原因与防范方法
  • emmc擦写寿命-分区能拯救系统盘吗?
  • 日本移动应用市场营销分析:娱乐和金融应用增长强劲,游戏类广告支出最高!