对数似然比(LLR)
LLR 基本原理
假设a[i]=aI[i]+jaQ[i]a[i]=a_{I}[i]+ja_{Q}[i]a[i]=aI[i]+jaQ[i]表示调制发送QAM复信号,数据{bI,1,...,bI,k,...,bI,m,bQ,1,...,bQ,k,...,bQ,m}\{b_{I,1},...,b_{I,k},...,b_{I,m},b_{Q,1},...,b_{Q,k},...,b_{Q,m}\}{bI,1,...,bI,k,...,bI,m,bQ,1,...,bQ,k,...,bQ,m}分为I,QI,QI,Q两路。假设信道的冲击响应为H(i)H(i)H(i),则接收信号可表示为:
r[i]=H(i).a[i]+w[i]
r[i]=H(i).a[i]+w[i]
r[i]=H(i).a[i]+w[i]
w[i]w[i]w[i]为复高斯白噪声方差σ2=N0\sigma^2=N_{0}σ2=N0,对于QAM调制信号,分IQ两路分别已bI,k,bQ,kb_{I,k},b_{Q,k}bI,k,bQ,k表示IQ两路第kkk比特取值(0,1)(0,1)(0,1),QAM 星座图中我们已第kkk比特取值为0或者1可将星座图分为两分区,其中已Sk(0)S_{k}^{(0)}Sk(0)表示第kkk比特为0的星座点集合,Sk(1)S_{k}^{(1)}Sk(1)表示第kkk比特为1星座点集合,由于I和Q路是一样的我们下来呢仅以I路为例进行说明。
对数似然比(LLR,Log−LikelihoodRatio)(LLR,Log-Likelihood Ratio)(LLR,Log−LikelihoodRatio)定义为:
LLR(bI,k)=logP[bI,k=0∣r[i]]P[bI,k=1∣r[i]]=log∑α∈Sk0P[α[i]=α∣r[i]]∑α∈Sk1P[α[i]=α∣r[i]]
\begin{align*}
LLR(b_{I,k})&=\log \frac{P[b_{I,k=0}|r[i]]}{P[b_{I,k=1}|r[i]]}\\
&=\log \frac{\sum_{\alpha\in S_{k}^{0}}P[\alpha[i]=\alpha|r[i]]}{\sum_{\alpha\in S_{k}^{1}}P[\alpha[i]=\alpha|r[i]]}
\end{align*}
LLR(bI,k)=logP[bI,k=1∣r[i]]P[bI,k=0∣r[i]]=log∑α∈Sk1P[α[i]=α∣r[i]]∑α∈Sk0P[α[i]=α∣r[i]]
应用贝叶斯公式且发送符号等概率分布可得:
LLR(bI,k)=log∑α∈Sk0P[α[i]=α∣r[i]]∑α∈Sk1P[α[i]=α∣r[i]]=log∑α∈Sk0P[r[i]∣α[i]=α]∑α∈Sk1P[r[i]∣α[i]=α]
\begin{align*}
LLR(b_{I,k})&=\log \frac{\sum_{\alpha\in S_{k}^{0}}P[\alpha[i]=\alpha|r[i]]}{\sum_{\alpha\in S_{k}^{1}}P[\alpha[i]=\alpha|r[i]]}\\
&=\log \frac{\sum_{\alpha\in S_{k}^{0}}P[r[i]|\alpha[i]=\alpha]}{\sum_{\alpha\in S_{k}^{1}}P[r[i]|\alpha[i]=\alpha]}\\
\end{align*}
LLR(bI,k)=log∑α∈Sk1P[α[i]=α∣r[i]]∑α∈Sk0P[α[i]=α∣r[i]]=log∑α∈Sk1P[r[i]∣α[i]=α]∑α∈Sk0P[r[i]∣α[i]=α]
高斯白噪声信道P[r[i]∣α[i]=α]P[r[i]|\alpha[i]=\alpha]P[r[i]∣α[i]=α]概率密度可表示为:
p(r[i]∣α[i]=α)=12πσe{−12∣r[i]−H(i)α∣2σ2}
\begin{align*}
p(r[i]|\alpha[i]&=\alpha)=\frac{1}{\sqrt{2\pi\sigma}}e^{\left\{ -\frac{1}{2}\frac{|r[i]-H(i)\alpha|^2}{\sigma^2} \right\}}\\
\end{align*}
p(r[i]∣α[i]=α)=2πσ1e{−21σ2∣r[i]−H(i)α∣2}
LLR(bI,k)=log∑α∈Sk0e{−12∣r[i]−H(i)α∣2σ2}∑α∈Sk1e{−12∣r[i]−H(i)α∣2σ2}
\begin{align*}
LLR(b_{I,k})&=\log\frac{\sum_{\alpha \in S_{k}^{0}}e^{\left\{ -\frac{1}{2}\frac{|r[i]-H(i)\alpha|^2}{\sigma^2} \right\}}}{\sum_{\alpha \in S_{k}^{1}}e^{\left\{ -\frac{1}{2}\frac{|r[i]-H(i)\alpha|^2}{\sigma^2} \right\}}}
\end{align*}
LLR(bI,k)=log∑α∈Sk1e{−21σ2∣r[i]−H(i)α∣2}∑α∈Sk0e{−21σ2∣r[i]−H(i)α∣2}
又$\log\sum_{j}z_{j}\thickapprox max_{j}\log z_{j} $
LLR(bI,k)=log∑α∈Sk0e{−12∣r[i]−H(i)α∣2σ2}∑α∈Sk1e{−12∣r[i]−H(i)α∣2σ2}≈logmaxα∈Sk0e{−12∣r[i]−H(i)α∣2σ2}maxα∈Sk1e{−12∣r[i]−H(i)α∣2σ2}=logmaxα∈Sk0e{−12∣r[i]−H(i)α∣2σ2}−logmaxα∈Sk1e{−12∣r[i]−H(i)α∣2σ2}=minα∈Sk0{−∣r[i]−H(i)α∣22σ2}−minα∈Sk1{−∣r[i]−H(i)α∣22σ2}=12σ2{minα∈Sk1∣r[i]−H(i)α∣2−minα∈Sk0∣r[i]−H(i)α∣2}
\begin{align*}
LLR(b_{I,k})&=\log\frac{\sum_{\alpha \in S_{k}^{0}}e^{\left\{ -\frac{1}{2}\frac{|r[i]-H(i)\alpha|^2}{\sigma^2} \right\}}}{\sum_{\alpha \in S_{k}^{1}}e^{\left\{ -\frac{1}{2}\frac{|r[i]-H(i)\alpha|^2}{\sigma^2} \right\}}}\\
&\thickapprox\log\frac{max_{\alpha \in S_{k}^{0}}e^{\left\{ -\frac{1}{2}\frac{|r[i]-H(i)\alpha|^2}{\sigma^2} \right\}}}{max_{\alpha \in S_{k}^{1}}e^{\left\{ -\frac{1}{2}\frac{|r[i]-H(i)\alpha|^2}{\sigma^2} \right\}}}\\
&=\log max_{\alpha \in S_{k}^{0}}e^{\left\{ -\frac{1}{2}\frac{|r[i]-H(i)\alpha|^2}{\sigma^2} \right\}}-\log max_{\alpha \in S_{k}^{1}}e^{\left\{ -\frac{1}{2}\frac{|r[i]-H(i)\alpha|^2}{\sigma^2} \right\}}\\
&=min_{\alpha\in S_{k}^{0}} \{-\frac{|r[i]-H(i)\alpha|^2}{2\sigma^2}\}-min_{\alpha\in S_{k}^{1}} \{-\frac{|r[i]-H(i)\alpha|^2}{2\sigma^2}\}\\
&=\frac{1}{2\sigma^2}\{ min_{\alpha \in S_{k}^{1}}|r[i]-H(i)\alpha|^2-min_{\alpha\in S_{k}^{0}} |r[i]-H(i)\alpha|^2 \}
\end{align*}
LLR(bI,k)=log∑α∈Sk1e{−21σ2∣r[i]−H(i)α∣2}∑α∈Sk0e{−21σ2∣r[i]−H(i)α∣2}≈logmaxα∈Sk1e{−21σ2∣r[i]−H(i)α∣2}maxα∈Sk0e{−21σ2∣r[i]−H(i)α∣2}=logmaxα∈Sk0e{−21σ2∣r[i]−H(i)α∣2}−logmaxα∈Sk1e{−21σ2∣r[i]−H(i)α∣2}=minα∈Sk0{−2σ2∣r[i]−H(i)α∣2}−minα∈Sk1{−2σ2∣r[i]−H(i)α∣2}=2σ21{minα∈Sk1∣r[i]−H(i)α∣2−minα∈Sk0∣r[i]−H(i)α∣2}
MMSE均衡矩阵如下:
W=(HH+N0I)−1HH\mathbf{W=(H^H+N_{0}I)^{-1}H^H}
W=(HH+N0I)−1HH
则III为单位矩阵大小为NrN_{r}Nr,均衡后的输出可表示为:
z=wH(hixi+∑k≠nhkxk+n)=wHhi⏟H(i)xi+wH(∑k≠nhkxk+n)⏟σ2
\begin{align*}
\mathbf{z}&=\mathbf{w^H}(\mathbf{h_{i}}x_{i}+{\sum_{k\neq n }\mathbf{h_{k}}x_{k}+\mathbf{n}})\\
&=\underbrace{\mathbf{w^H}\mathbf{h_{i}}}_{H(i)}x_{i}+\underbrace{\mathbf{w^H}({\sum_{k\neq n }\mathbf{h_{k}}x_{k}+\mathbf{n}})}_{\sigma^2}\\
\end{align*}
z=wH(hixi+k=n∑hkxk+n)=H(i)wHhixi+σ2wH(k=n∑hkxk+n)
LLR(bI,k)=∣H(i)∣22σ2{minα∈Sk1∣x[i]−α∣2−minα∈Sk0∣x[i]−α∣2}
\begin{align*}
LLR(b_{I,k})&=\frac{|H(i)|^2}{2\sigma^2}\{\mathop {min}\limits_{\alpha \in S_{k}^{1}}|x[i]-\alpha|^2-\mathop {min}\limits_{\alpha\in S_{k}^{0}} |x[i]-\alpha|^2 \}\\
\end{align*}
LLR(bI,k)=2σ2∣H(i)∣2{α∈Sk1min∣x[i]−α∣2−α∈Sk0min∣x[i]−α∣2}
注意很多参考文献将LLRLLRLLR定义为比特1概率比比特0,这个实际上没啥影响因为在后续译码只需要
LLR(bI,k)>0,判定为1LLR(bI,k)<0,判定为0
LLR(b_{I,k}) > 0, 判定为1\\
LLR(b_{I,k}) < 0, 判定为0
LLR(bI,k)>0,判定为1LLR(bI,k)<0,判定为0
LLR(bI,k)=logP[bI,k=1∣r[i]]P[bI,k=0∣r[i]]
LLR(b_{I,k})=\log \frac{P[b_{I,k=1}|r[i]]}{P[b_{I,k=0}|r[i]]}
LLR(bI,k)=logP[bI,k=0∣r[i]]P[bI,k=1∣r[i]]
LLR(bI,k)=∣H(i)∣22σ2{minα∈Sk0∣x[i]−α∣2−minα∈Sk1∣x[i]−α∣2}≜∣H(i)∣22σ2.DI,kDI,k=minα∈Sk0∣x[i]−α∣2−minα∈Sk1∣x[i]−α∣2
\begin{align*}
LLR(b_{I,k})&=\frac{|H(i)|^2}{2\sigma^2}\{\mathop {min}\limits_{\alpha \in S_{k}^{0}}|x[i]-\alpha|^2-\mathop {min}\limits_{\alpha\in S_{k}^{1}} |x[i]-\alpha|^2 \}\\
&\triangleq \frac{|H(i)|^2}{2\sigma^2}.D_{I,k}\\
D_{I,k}&=\mathop {min}\limits_{\alpha \in S_{k}^{0}}|x[i]-\alpha|^2-\mathop {min}\limits_{\alpha\in S_{k}^{1}} |x[i]-\alpha|^2
\end{align*}
LLR(bI,k)DI,k=2σ2∣H(i)∣2{α∈Sk0min∣x[i]−α∣2−α∈Sk1min∣x[i]−α∣2}≜2σ2∣H(i)∣2.DI,k=α∈Sk0min∣x[i]−α∣2−α∈Sk1min∣x[i]−α∣2
使用2σ2\frac{2}{\sigma^2}σ22 对LLRLLRLLR做下归一化,则上式可定义为:
LLR(bI,k)=∣H(i)∣24{minα∈Sk0∣x[i]−α∣2−minα∈Sk1∣x[i]−α∣2}≜∣H(i)∣24.DI,kDI,k=14minα∈Sk0∣x[i]−α∣2−minα∈Sk1∣x[i]−α∣2
\begin{align*}
LLR(b_{I,k})&=\frac{|H(i)|^2}{4}\{\mathop {min}\limits_{\alpha \in S_{k}^{0}}|x[i]-\alpha|^2-\mathop {min}\limits_{\alpha\in S_{k}^{1}} |x[i]-\alpha|^2 \}\\
&\triangleq \frac{|H(i)|^2}{4}.D_{I,k}\\
D_{I,k}&=\frac{1}{4}\mathop {min}\limits_{\alpha \in S_{k}^{0}}|x[i]-\alpha|^2-\mathop {min}\limits_{\alpha\in S_{k}^{1}} |x[i]-\alpha|^2
\end{align*}
LLR(bI,k)DI,k=4∣H(i)∣2{α∈Sk0min∣x[i]−α∣2−α∈Sk1min∣x[i]−α∣2}≜4∣H(i)∣2.DI,k=41α∈Sk0min∣x[i]−α∣2−α∈Sk1min∣x[i]−α∣2
后续为了方便和参考文献仿真对比我们也已比特1和比特0定义的LLRLLRLLR进行推到。
至此LLRLLRLLR的基本原理已经介绍完了,但是针对每一个比特计算DI,kD_{I,k}DI,k运算量比较大所以很多的文章又针对其做了很多简化处理已降低运算量。下面我们针对参考文献1中16QAM调制信号简化策略进行说明,其中bit位置顺序(b1,b2,b3,b4)(b_{1},b_{2},b_{3},b_{4})(b1,b2,b3,b4):
第一幅图片中b1b_{1}b1为0的星座点为左半轴所有星座点的集合即S10S_{1}^{0}S10,b1b_{1}b1为1的星座点集合为右边半轴星座点即S11S_{1}^{1}S11,如图1所示星座点我们可知:
xI[i]>2xQ[i]>2
\begin{align*}
x_{I}[i] >2\\
x_{Q}[i] >2
\end{align*}
xI[i]>2xQ[i]>2
我们把bit为1称为正比特用+++标记,0称为反比特用−-−标记,所以计算b1的llrb_{1}的llrb1的llr时,与x[i]x[i]x[i]距离最近的+++比特星座点为{3+3j}\{3+3j\}{3+3j},反比特的星座点为{−1+3j}\{-1+3j\}{−1+3j},带入DI,1D_{I,1}DI,1可得:
DI,1=14minα∈Sk0∣x[i]−α∣2−minα∈Sk1∣x[i]−α∣2=14{∣xI[i]+xQ[i]j−(−1+3j)∣2−∣xI[i]+xQ[i]j−(3+3j)∣2}=14{(xI[i]+1)2+(xQ[i]−3)2−(xI[i]−3)2−(xQ[i]−3)2}=2(xI[i]−1)−−−xI[i]>2
\begin{align*}
D_{I,1}&=\frac{1}{4}\mathop {min}\limits_{\alpha \in S_{k}^{0}}|x[i]-\alpha|^2-\mathop {min}\limits_{\alpha\in S_{k}^{1}} |x[i]-\alpha|^2 \\
&=\frac{1}{4}\{|x_{I}[i]+x_{Q}[i]j-(-1+3j)|^2-|x_{I}[i]+x_{Q}[i]j-(3+3j)|^2\}\\
&=\frac{1}{4}\{(x_{I}[i]+1)^2+(x_{Q}[i]-3)^2-(x_{I}[i]-3)^2-(x_{Q}[i]-3)^2\}\\
&=2(x_{I}[i]-1) --- x_{I}[i]>2
\end{align*}
DI,1=41α∈Sk0min∣x[i]−α∣2−α∈Sk1min∣x[i]−α∣2=41{∣xI[i]+xQ[i]j−(−1+3j)∣2−∣xI[i]+xQ[i]j−(3+3j)∣2}=41{(xI[i]+1)2+(xQ[i]−3)2−(xI[i]−3)2−(xQ[i]−3)2}=2(xI[i]−1)−−−xI[i]>2
同理针对x[i]x[i]x[i]可能的星座点位置可得:
DI,1={xI[i],∣xI[i]∣≤22(xI[i]−1),xI[i]>22(xI[i]+1),xI[i]<−2DI,2=−∣xI[i]∣+2
\begin{align*}
D_{I,1}&=\begin{cases}
x_{I}[i], & |x_{I}[i]|\leq 2 \\
2(x_{I}[i]-1),& x_{I}[i]>2 \\
2(x_{I}[i]+1),&x_{I}[i]<-2
\end{cases}\\
D_{I,2}&=-|x_{I}[i]|+2
\end{align*}
DI,1DI,2=⎩⎨⎧xI[i],2(xI[i]−1),2(xI[i]+1),∣xI[i]∣≤2xI[i]>2xI[i]<−2=−∣xI[i]∣+2
同样的原理针对64QAM信号有如下公式(I路举例):
DI,1={xI[i],∣xI[i]∣≤22(xI[i]−1),2<xI[i]≤43(xI[i]−2),4<xI[i]≤64(xI[i]−3),xI[i]>62(xI[i]+1),−4≤xI[i]<−23(xI[i]+2),−6≤xI[i]<−44(xI[i]+3),xI[i]<−6>DI,2={2(−∣xI[i]∣+3),∣xI[i]∣≤24−∣xI[i]∣,2<∣xI[i]∣≤62(−∣xI[i]∣+5),∣xI[i]∣>6DI,3={∣xI[i]∣−2,∣xI[i]∣≤4−∣xI[i]∣+6,xI[i]>4
\begin{align*}
D_{I,1}&=\begin{cases}
x_{I}[i], & |x_{I}[i]|\leq 2 \\
2(x_{I}[i]-1),& 2<x_{I}[i] \leq 4 \\
3(x_{I}[i]-2),& 4<x_{I}[i]\leq 6\\
4(x_{I}[i]-3), & x_{I}[i] >6\\
2(x_{I}[i]+1), & -4\leq x_{I}[i]<-2\\
3(x_{I}[i]+2), & -6 \leq x_{I}[i]<-4\\
4(x_{I}[i]+3),& x_{I}[i]<-6>
\end{cases}\\
D_{I,2}&=\begin{cases}
2(-|x_{I}[i]|+3), & |x_{I}[i]|\leq 2 \\
4-|x_{I}[i]|,& 2 <|x_{I}[i]| \leq 6 \\
2(-|x_{I}[i]|+5),&|x_{I}[i]|>6
\end{cases}\\
D_{I,3}&=\begin{cases}
|x_{I}[i]|-2, & |x_{I}[i]|\leq 4 \\
-|x_{I}[i]|+6,& x_{I}[i]>4 \\
\end{cases}\\
\end{align*}
DI,1DI,2DI,3=⎩⎨⎧xI[i],2(xI[i]−1),3(xI[i]−2),4(xI[i]−3),2(xI[i]+1),3(xI[i]+2),4(xI[i]+3),∣xI[i]∣≤22<xI[i]≤44<xI[i]≤6xI[i]>6−4≤xI[i]<−2−6≤xI[i]<−4xI[i]<−6>=⎩⎨⎧2(−∣xI[i]∣+3),4−∣xI[i]∣,2(−∣xI[i]∣+5),∣xI[i]∣≤22<∣xI[i]∣≤6∣xI[i]∣>6={∣xI[i]∣−2,−∣xI[i]∣+6,∣xI[i]∣≤4xI[i]>4
同理256QAM信号有如下公式:
b0b_{0}b0星座点
b1b_{1}b1星座点
b2b_{2}b2星座点
b3b_{3}b3星座点
DI,1={8∗(xI[i]+7),xI[i]<−147∗(xI[i]+6),−14≤xI[i]<−126∗(xI[i]+5),−12≤xI[i]<−105∗(xI[i]+4),−10≤xI[i]<−84∗(xI[i]+3),−8≤xI[i]<−63∗(xI[i]+2),−6≤xI[i]<−42∗(xI[i]+2),−4≤xI[i]<−2xI[i],−2≤xI[i]<22∗(xI[i]−1),2≤xI[i]<43∗(xI[i]−2),4≤xI[i]<64∗(xI[i]−3),6≤xI[i]<85∗(xI[i]−4),8≤xI[i]<106∗(xI[i]−5),10≤xI[i]<127∗(xI[i]−6),12≤xI[i]<148∗(xI[i]−7),14≤xI[i]DI,2={4∗(−∣xI[i]∣+11),∣xI[i]∣≥143∗(−∣xI[i]∣+10),12≤∣xI[i]∣<142∗(−∣xI[i]∣+9),10≤∣xI[i]∣<121∗(−∣xI[i]∣+8),6≤∣xI[i]∣<102∗(−∣xI[i]∣+7),4≤∣xI[i]∣<63∗(−∣xI[i]∣+6),2≤∣xI[i]∣<44∗(−∣xI[i]∣+5),∣xI[i]∣<2DI,3={2∗(−∣xI[i]∣+13),14≤∣xI[i]∣1(−∣xI[i]∣+12),10≤∣xI[i]∣<142(−∣xI[i]∣+11),8≤∣xI[i]∣<102(∣xI[i]∣−5),6≤∣xI[i]∣<8∣xI[i]∣−4,2≤∣xI[i]∣<62(∣xI[i]∣−3),∣xI[i]∣<2DI,4={−∣xI[i]∣+14,12≤∣xI[i]∣∣xI[i]∣−10,8≤∣xI[i]∣<12−∣xI[i]∣+6,4≤∣xI[i]∣<8∣xI[i]∣−2,∣xI[i]∣<4
\begin{align*}
D_{I,1}&=\begin{cases}
8*(x_{I}[i]+7), & x_{I}[i] < -14 \\
7*(x_{I}[i]+6), & -14\leq x_{I}[i]< -12 \\
6*(x_{I}[i]+5), &-12 \leq x_{I}[i]<-10\\
5*(x_{I}[i]+4), &-10 \leq x_{I}[i]<-8\\
4*(x_{I}[i]+3), &-8 \leq x_{I}[i]<-6\\
3*(x_{I}[i]+2), &-6 \leq x_{I}[i]<-4\\
2*(x_{I}[i]+2), &-4\leq x_{I}[i]<-2\\
x_{I}[i], & -2\leq x_{I}[i]<2\\
2*(x_{I}[i]-1), &2 \leq x_{I}[i] <4\\
3*(x_{I}[i]-2), &4 \leq x_{I}[i] <6 \\
4*(x_{I}[i]-3), &6 \leq x_{I}[i] <8\\
5*(x_{I}[i]-4), &8 \leq x_{I}[i] <10\\
6*(x_{I}[i]-5), &10 \leq x_{I}[i] <12\\
7*(x_{I}[i]-6), &12 \leq x_{I}[i] <14\\
8*(x_{I}[i]-7), &14 \leq x_{I}[i]\\
\end{cases}\\
\\
D_{I,2}&=\begin{cases}
4*(-|x_{I}[i]|+11), & |x_{I}[i]|\geq 14 \\
3*(-|x_{I}[i]|+10), & 12 \leq |x_{I}[i]|< 14 \\
2*(-|x_{I}[i]|+9), & 10 \leq |x_{I}[i]|< 12 \\
1*(-|x_{I}[i]|+8), & 6 \leq |x_{I}[i]|< 10 \\
2*(-|x_{I}[i]|+7), & 4 \leq |x_{I}[i]|< 6 \\
3*(-|x_{I}[i]|+6), & 2 \leq |x_{I}[i]|< 4 \\
4*(-|x_{I}[i]|+5), & |x_{I}[i]|< 2 \\
\end{cases}\\
\\
D_{I,3}&=\begin{cases}
2*(-|x_{I}[i]|+13), & 14 \leq |x_{I}[i]|\\
1(-|x_{I}[i]|+12), & 10 \leq |x_{I}[i]| <14 \\
2(-|x_{I}[i]|+11), & 8 \leq |x_{I}[i]| <10 \\
2(|x_{I}[i]|-5), & 6 \leq |x_{I}[i]| <8 \\
|x_{I}[i]|-4, & 2 \leq |x_{I}[i]| <6 \\
2(|x_{I}[i]|-3), & |x_{I}[i]| <2 \\
\end{cases}\\
\\
D_{I,4}&=\begin{cases}
-|x_{I}[i]|+14, & 12 \leq |x_{I}[i]|\\
|x_{I}[i]|-10, & 8 \leq |x_{I}[i]|<12\\
-|x_{I}[i]|+6, & 4 \leq |x_{I}[i]|<8\\
|x_{I}[i]|-2, & |x_{I}[i]|<4\\
\end{cases}\\
\end{align*}
DI,1DI,2DI,3DI,4=⎩⎨⎧8∗(xI[i]+7),7∗(xI[i]+6),6∗(xI[i]+5),5∗(xI[i]+4),4∗(xI[i]+3),3∗(xI[i]+2),2∗(xI[i]+2),xI[i],2∗(xI[i]−1),3∗(xI[i]−2),4∗(xI[i]−3),5∗(xI[i]−4),6∗(xI[i]−5),7∗(xI[i]−6),8∗(xI[i]−7),xI[i]<−14−14≤xI[i]<−12−12≤xI[i]<−10−10≤xI[i]<−8−8≤xI[i]<−6−6≤xI[i]<−4−4≤xI[i]<−2−2≤xI[i]<22≤xI[i]<44≤xI[i]<66≤xI[i]<88≤xI[i]<1010≤xI[i]<1212≤xI[i]<1414≤xI[i]=⎩⎨⎧4∗(−∣xI[i]∣+11),3∗(−∣xI[i]∣+10),2∗(−∣xI[i]∣+9),1∗(−∣xI[i]∣+8),2∗(−∣xI[i]∣+7),3∗(−∣xI[i]∣+6),4∗(−∣xI[i]∣+5),∣xI[i]∣≥1412≤∣xI[i]∣<1410≤∣xI[i]∣<126≤∣xI[i]∣<104≤∣xI[i]∣<62≤∣xI[i]∣<4∣xI[i]∣<2=⎩⎨⎧2∗(−∣xI[i]∣+13),1(−∣xI[i]∣+12),2(−∣xI[i]∣+11),2(∣xI[i]∣−5),∣xI[i]∣−4,2(∣xI[i]∣−3),14≤∣xI[i]∣10≤∣xI[i]∣<148≤∣xI[i]∣<106≤∣xI[i]∣<82≤∣xI[i]∣<6∣xI[i]∣<2=⎩⎨⎧−∣xI[i]∣+14,∣xI[i]∣−10,−∣xI[i]∣+6,∣xI[i]∣−2,12≤∣xI[i]∣8≤∣xI[i]∣<124≤∣xI[i]∣<8∣xI[i]∣<4
同理针对Q路是同样的原理只需要,将xI[i]x_{I}[i]xI[i]替换成xQ[i]x_{Q}[i]xQ[i]。
更进一步的简化:
16QAM
DI,1=xI[i],DI,2=−∣DI,1∣+2 \begin{align*} D_{I,1}&=x_{I}[i],\\ D_{I,2}&=-|D_{I,1}|+2 \end{align*} DI,1DI,2=xI[i],=−∣DI,1∣+2
64QAM
DI,1⋍xI[i],DI,2⋍−∣DI,1∣+4DI,3⋍−∣DI,2∣∣+2
\begin{align*}
D_{I,1}&\backsimeq x_{I}[i],\\
D_{I,2}&\backsimeq -|D_{I,1}|+4\\
D_{I,3}&\backsimeq -|D_{I,2}||+2
\end{align*}
DI,1DI,2DI,3⋍xI[i],⋍−∣DI,1∣+4⋍−∣DI,2∣∣+2
256QAM
DI,1⋍xI[i],DI,2⋍−∣DI,1∣+8DI,3⋍−∣DI,2∣+4DI,4⋍−∣DI,3∣+2 \begin{align*} D_{I,1}&\backsimeq x_{I}[i],\\ D_{I,2}&\backsimeq -|D_{I,1}|+8\\ D_{I,3}&\backsimeq -|D_{I,2}|+4\\ D_{I,4}&\backsimeq -|D_{I,3}|+2\\ \end{align*} DI,1DI,2DI,3DI,4⋍xI[i],⋍−∣DI,1∣+8⋍−∣DI,2∣+4⋍−∣DI,3∣+2
假设QAM信号比特数目为mmm,令d=2m2−1,m=4,6,8d=2^{\frac{m}{2}-1},m=4,6,8d=22m−1,m=4,6,8
DI,1⋍xI[i],DI,i⋍−∣DI,1∣+d>>(i−1),i=0:1:(2,3,4)
\begin{align*}
D_{I,1}&\backsimeq x_{I}[i],\\
D_{I,i}&\backsimeq -|D_{I,1}|+d>>(i-1),i=0:1:(2,3,4)\\
\end{align*}
DI,1DI,i⋍xI[i],⋍−∣DI,1∣+d>>(i−1),i=0:1:(2,3,4)
【1】Simplified Soft-Output Demapper for Binary Interleaved COFDM with Application to HIPERLAN/2
【2】A Low Complexity 256QAM Soft Demapper for 5G Mobile System