当前位置: 首页 > news >正文

对数似然比(LLR)

LLR 基本原理

假设a[i]=aI[i]+jaQ[i]a[i]=a_{I}[i]+ja_{Q}[i]a[i]=aI[i]+jaQ[i]表示调制发送QAM复信号,数据{bI,1,...,bI,k,...,bI,m,bQ,1,...,bQ,k,...,bQ,m}\{b_{I,1},...,b_{I,k},...,b_{I,m},b_{Q,1},...,b_{Q,k},...,b_{Q,m}\}{bI,1,...,bI,k,...,bI,m,bQ,1,...,bQ,k,...,bQ,m}分为I,QI,QI,Q两路。假设信道的冲击响应为H(i)H(i)H(i),则接收信号可表示为:
r[i]=H(i).a[i]+w[i] r[i]=H(i).a[i]+w[i] r[i]=H(i).a[i]+w[i]
w[i]w[i]w[i]为复高斯白噪声方差σ2=N0\sigma^2=N_{0}σ2=N0,对于QAM调制信号,分IQ两路分别已bI,k,bQ,kb_{I,k},b_{Q,k}bI,k,bQ,k表示IQ两路第kkk比特取值(0,1)(0,1)(0,1),QAM 星座图中我们已第kkk比特取值为0或者1可将星座图分为两分区,其中已Sk(0)S_{k}^{(0)}Sk(0)表示第kkk比特为0的星座点集合,Sk(1)S_{k}^{(1)}Sk(1)表示第kkk比特为1星座点集合,由于I和Q路是一样的我们下来呢仅以I路为例进行说明。
对数似然比(LLR,Log−LikelihoodRatio)(LLR,Log-Likelihood Ratio)LLR,LogLikelihoodRatio定义为:
LLR(bI,k)=log⁡P[bI,k=0∣r[i]]P[bI,k=1∣r[i]]=log⁡∑α∈Sk0P[α[i]=α∣r[i]]∑α∈Sk1P[α[i]=α∣r[i]] \begin{align*} LLR(b_{I,k})&=\log \frac{P[b_{I,k=0}|r[i]]}{P[b_{I,k=1}|r[i]]}\\ &=\log \frac{\sum_{\alpha\in S_{k}^{0}}P[\alpha[i]=\alpha|r[i]]}{\sum_{\alpha\in S_{k}^{1}}P[\alpha[i]=\alpha|r[i]]} \end{align*} LLR(bI,k)=logP[bI,k=1r[i]]P[bI,k=0r[i]]=logαSk1P[α[i]=αr[i]]αSk0P[α[i]=αr[i]]
应用贝叶斯公式且发送符号等概率分布可得:
LLR(bI,k)=log⁡∑α∈Sk0P[α[i]=α∣r[i]]∑α∈Sk1P[α[i]=α∣r[i]]=log⁡∑α∈Sk0P[r[i]∣α[i]=α]∑α∈Sk1P[r[i]∣α[i]=α] \begin{align*} LLR(b_{I,k})&=\log \frac{\sum_{\alpha\in S_{k}^{0}}P[\alpha[i]=\alpha|r[i]]}{\sum_{\alpha\in S_{k}^{1}}P[\alpha[i]=\alpha|r[i]]}\\ &=\log \frac{\sum_{\alpha\in S_{k}^{0}}P[r[i]|\alpha[i]=\alpha]}{\sum_{\alpha\in S_{k}^{1}}P[r[i]|\alpha[i]=\alpha]}\\ \end{align*} LLR(bI,k)=logαSk1P[α[i]=αr[i]]αSk0P[α[i]=αr[i]]=logαSk1P[r[i]α[i]=α]αSk0P[r[i]α[i]=α]
高斯白噪声信道P[r[i]∣α[i]=α]P[r[i]|\alpha[i]=\alpha]P[r[i]α[i]=α]概率密度可表示为:
p(r[i]∣α[i]=α)=12πσe{−12∣r[i]−H(i)α∣2σ2} \begin{align*} p(r[i]|\alpha[i]&=\alpha)=\frac{1}{\sqrt{2\pi\sigma}}e^{\left\{ -\frac{1}{2}\frac{|r[i]-H(i)\alpha|^2}{\sigma^2} \right\}}\\ \end{align*} p(r[i]α[i]=α)=2πσ1e{21σ2r[i]H(i)α2}

LLR(bI,k)=log⁡∑α∈Sk0e{−12∣r[i]−H(i)α∣2σ2}∑α∈Sk1e{−12∣r[i]−H(i)α∣2σ2} \begin{align*} LLR(b_{I,k})&=\log\frac{\sum_{\alpha \in S_{k}^{0}}e^{\left\{ -\frac{1}{2}\frac{|r[i]-H(i)\alpha|^2}{\sigma^2} \right\}}}{\sum_{\alpha \in S_{k}^{1}}e^{\left\{ -\frac{1}{2}\frac{|r[i]-H(i)\alpha|^2}{\sigma^2} \right\}}} \end{align*} LLR(bI,k)=logαSk1e{21σ2r[i]H(i)α2}αSk0e{21σ2r[i]H(i)α2}
又$\log\sum_{j}z_{j}\thickapprox max_{j}\log z_{j} $

LLR(bI,k)=log⁡∑α∈Sk0e{−12∣r[i]−H(i)α∣2σ2}∑α∈Sk1e{−12∣r[i]−H(i)α∣2σ2}≈log⁡maxα∈Sk0e{−12∣r[i]−H(i)α∣2σ2}maxα∈Sk1e{−12∣r[i]−H(i)α∣2σ2}=log⁡maxα∈Sk0e{−12∣r[i]−H(i)α∣2σ2}−log⁡maxα∈Sk1e{−12∣r[i]−H(i)α∣2σ2}=minα∈Sk0{−∣r[i]−H(i)α∣22σ2}−minα∈Sk1{−∣r[i]−H(i)α∣22σ2}=12σ2{minα∈Sk1∣r[i]−H(i)α∣2−minα∈Sk0∣r[i]−H(i)α∣2} \begin{align*} LLR(b_{I,k})&=\log\frac{\sum_{\alpha \in S_{k}^{0}}e^{\left\{ -\frac{1}{2}\frac{|r[i]-H(i)\alpha|^2}{\sigma^2} \right\}}}{\sum_{\alpha \in S_{k}^{1}}e^{\left\{ -\frac{1}{2}\frac{|r[i]-H(i)\alpha|^2}{\sigma^2} \right\}}}\\ &\thickapprox\log\frac{max_{\alpha \in S_{k}^{0}}e^{\left\{ -\frac{1}{2}\frac{|r[i]-H(i)\alpha|^2}{\sigma^2} \right\}}}{max_{\alpha \in S_{k}^{1}}e^{\left\{ -\frac{1}{2}\frac{|r[i]-H(i)\alpha|^2}{\sigma^2} \right\}}}\\ &=\log max_{\alpha \in S_{k}^{0}}e^{\left\{ -\frac{1}{2}\frac{|r[i]-H(i)\alpha|^2}{\sigma^2} \right\}}-\log max_{\alpha \in S_{k}^{1}}e^{\left\{ -\frac{1}{2}\frac{|r[i]-H(i)\alpha|^2}{\sigma^2} \right\}}\\ &=min_{\alpha\in S_{k}^{0}} \{-\frac{|r[i]-H(i)\alpha|^2}{2\sigma^2}\}-min_{\alpha\in S_{k}^{1}} \{-\frac{|r[i]-H(i)\alpha|^2}{2\sigma^2}\}\\ &=\frac{1}{2\sigma^2}\{ min_{\alpha \in S_{k}^{1}}|r[i]-H(i)\alpha|^2-min_{\alpha\in S_{k}^{0}} |r[i]-H(i)\alpha|^2 \} \end{align*} LLR(bI,k)=logαSk1e{21σ2r[i]H(i)α2}αSk0e{21σ2r[i]H(i)α2}logmaxαSk1e{21σ2r[i]H(i)α2}maxαSk0e{21σ2r[i]H(i)α2}=logmaxαSk0e{21σ2r[i]H(i)α2}logmaxαSk1e{21σ2r[i]H(i)α2}=minαSk0{2σ2r[i]H(i)α2}minαSk1{2σ2r[i]H(i)α2}=2σ21{minαSk1r[i]H(i)α2minαSk0r[i]H(i)α2}
MMSE均衡矩阵如下:
W=(HH+N0I)−1HH\mathbf{W=(H^H+N_{0}I)^{-1}H^H} W=(HH+N0I)1HH
III为单位矩阵大小为NrN_{r}Nr,均衡后的输出可表示为:
z=wH(hixi+∑k≠nhkxk+n)=wHhi⏟H(i)xi+wH(∑k≠nhkxk+n)⏟σ2 \begin{align*} \mathbf{z}&=\mathbf{w^H}(\mathbf{h_{i}}x_{i}+{\sum_{k\neq n }\mathbf{h_{k}}x_{k}+\mathbf{n}})\\ &=\underbrace{\mathbf{w^H}\mathbf{h_{i}}}_{H(i)}x_{i}+\underbrace{\mathbf{w^H}({\sum_{k\neq n }\mathbf{h_{k}}x_{k}+\mathbf{n}})}_{\sigma^2}\\ \end{align*} z=wH(hixi+k=nhkxk+n)=H(i)wHhixi+σ2wH(k=nhkxk+n)
LLR(bI,k)=∣H(i)∣22σ2{minα∈Sk1∣x[i]−α∣2−minα∈Sk0∣x[i]−α∣2} \begin{align*} LLR(b_{I,k})&=\frac{|H(i)|^2}{2\sigma^2}\{\mathop {min}\limits_{\alpha \in S_{k}^{1}}|x[i]-\alpha|^2-\mathop {min}\limits_{\alpha\in S_{k}^{0}} |x[i]-\alpha|^2 \}\\ \end{align*} LLR(bI,k)=2σ2H(i)2{αSk1minx[i]α2αSk0minx[i]α2}
注意很多参考文献将LLRLLRLLR定义为比特1概率比比特0,这个实际上没啥影响因为在后续译码只需要
LLR(bI,k)>0,判定为1LLR(bI,k)<0,判定为0 LLR(b_{I,k}) > 0, 判定为1\\ LLR(b_{I,k}) < 0, 判定为0 LLR(bI,k)>0,判定为1LLR(bI,k)<0,判定为0
LLR(bI,k)=log⁡P[bI,k=1∣r[i]]P[bI,k=0∣r[i]] LLR(b_{I,k})=\log \frac{P[b_{I,k=1}|r[i]]}{P[b_{I,k=0}|r[i]]} LLR(bI,k)=logP[bI,k=0r[i]]P[bI,k=1r[i]]
LLR(bI,k)=∣H(i)∣22σ2{minα∈Sk0∣x[i]−α∣2−minα∈Sk1∣x[i]−α∣2}≜∣H(i)∣22σ2.DI,kDI,k=minα∈Sk0∣x[i]−α∣2−minα∈Sk1∣x[i]−α∣2 \begin{align*} LLR(b_{I,k})&=\frac{|H(i)|^2}{2\sigma^2}\{\mathop {min}\limits_{\alpha \in S_{k}^{0}}|x[i]-\alpha|^2-\mathop {min}\limits_{\alpha\in S_{k}^{1}} |x[i]-\alpha|^2 \}\\ &\triangleq \frac{|H(i)|^2}{2\sigma^2}.D_{I,k}\\ D_{I,k}&=\mathop {min}\limits_{\alpha \in S_{k}^{0}}|x[i]-\alpha|^2-\mathop {min}\limits_{\alpha\in S_{k}^{1}} |x[i]-\alpha|^2 \end{align*} LLR(bI,k)DI,k=2σ2H(i)2{αSk0minx[i]α2αSk1minx[i]α2}2σ2H(i)2.DI,k=αSk0minx[i]α2αSk1minx[i]α2
使用2σ2\frac{2}{\sigma^2}σ22LLRLLRLLR做下归一化,则上式可定义为:
LLR(bI,k)=∣H(i)∣24{minα∈Sk0∣x[i]−α∣2−minα∈Sk1∣x[i]−α∣2}≜∣H(i)∣24.DI,kDI,k=14minα∈Sk0∣x[i]−α∣2−minα∈Sk1∣x[i]−α∣2 \begin{align*} LLR(b_{I,k})&=\frac{|H(i)|^2}{4}\{\mathop {min}\limits_{\alpha \in S_{k}^{0}}|x[i]-\alpha|^2-\mathop {min}\limits_{\alpha\in S_{k}^{1}} |x[i]-\alpha|^2 \}\\ &\triangleq \frac{|H(i)|^2}{4}.D_{I,k}\\ D_{I,k}&=\frac{1}{4}\mathop {min}\limits_{\alpha \in S_{k}^{0}}|x[i]-\alpha|^2-\mathop {min}\limits_{\alpha\in S_{k}^{1}} |x[i]-\alpha|^2 \end{align*} LLR(bI,k)DI,k=4H(i)2{αSk0minx[i]α2αSk1minx[i]α2}4H(i)2.DI,k=41αSk0minx[i]α2αSk1minx[i]α2

后续为了方便和参考文献仿真对比我们也已比特1和比特0定义的LLRLLRLLR进行推到。
至此LLRLLRLLR的基本原理已经介绍完了,但是针对每一个比特计算DI,kD_{I,k}DI,k运算量比较大所以很多的文章又针对其做了很多简化处理已降低运算量。下面我们针对参考文献1中16QAM调制信号简化策略进行说明,其中bit位置顺序(b1,b2,b3,b4)(b_{1},b_{2},b_{3},b_{4})(b1,b2,b3,b4)
在这里插入图片描述

第一幅图片中b1b_{1}b1为0的星座点为左半轴所有星座点的集合即S10S_{1}^{0}S10,b1b_{1}b1为1的星座点集合为右边半轴星座点即S11S_{1}^{1}S11,如图1所示星座点我们可知:
xI[i]>2xQ[i]>2 \begin{align*} x_{I}[i] >2\\ x_{Q}[i] >2 \end{align*} xI[i]>2xQ[i]>2
我们把bit为1称为正比特用+++标记,0称为反比特用−-标记,所以计算b1的llrb_{1}的llrb1llr时,与x[i]x[i]x[i]距离最近的+++比特星座点为{3+3j}\{3+3j\}{3+3j},反比特的星座点为{−1+3j}\{-1+3j\}{1+3j},带入DI,1D_{I,1}DI,1可得:
DI,1=14minα∈Sk0∣x[i]−α∣2−minα∈Sk1∣x[i]−α∣2=14{∣xI[i]+xQ[i]j−(−1+3j)∣2−∣xI[i]+xQ[i]j−(3+3j)∣2}=14{(xI[i]+1)2+(xQ[i]−3)2−(xI[i]−3)2−(xQ[i]−3)2}=2(xI[i]−1)−−−xI[i]>2 \begin{align*} D_{I,1}&=\frac{1}{4}\mathop {min}\limits_{\alpha \in S_{k}^{0}}|x[i]-\alpha|^2-\mathop {min}\limits_{\alpha\in S_{k}^{1}} |x[i]-\alpha|^2 \\ &=\frac{1}{4}\{|x_{I}[i]+x_{Q}[i]j-(-1+3j)|^2-|x_{I}[i]+x_{Q}[i]j-(3+3j)|^2\}\\ &=\frac{1}{4}\{(x_{I}[i]+1)^2+(x_{Q}[i]-3)^2-(x_{I}[i]-3)^2-(x_{Q}[i]-3)^2\}\\ &=2(x_{I}[i]-1) --- x_{I}[i]>2 \end{align*} DI,1=41αSk0minx[i]α2αSk1minx[i]α2=41{xI[i]+xQ[i]j(1+3j)2xI[i]+xQ[i]j(3+3j)2}=41{(xI[i]+1)2+(xQ[i]3)2(xI[i]3)2(xQ[i]3)2}=2(xI[i]1)xI[i]>2
同理针对x[i]x[i]x[i]可能的星座点位置可得:

DI,1={xI[i],∣xI[i]∣≤22(xI[i]−1),xI[i]>22(xI[i]+1),xI[i]<−2DI,2=−∣xI[i]∣+2 \begin{align*} D_{I,1}&=\begin{cases} x_{I}[i], & |x_{I}[i]|\leq 2 \\ 2(x_{I}[i]-1),& x_{I}[i]>2 \\ 2(x_{I}[i]+1),&x_{I}[i]<-2 \end{cases}\\ D_{I,2}&=-|x_{I}[i]|+2 \end{align*} DI,1DI,2=xI[i],2(xI[i]1),2(xI[i]+1),xI[i]2xI[i]>2xI[i]<2=xI[i]+2
同样的原理针对64QAM信号有如下公式(I路举例):
在这里插入图片描述

DI,1={xI[i],∣xI[i]∣≤22(xI[i]−1),2<xI[i]≤43(xI[i]−2),4<xI[i]≤64(xI[i]−3),xI[i]>62(xI[i]+1),−4≤xI[i]<−23(xI[i]+2),−6≤xI[i]<−44(xI[i]+3),xI[i]<−6>DI,2={2(−∣xI[i]∣+3),∣xI[i]∣≤24−∣xI[i]∣,2<∣xI[i]∣≤62(−∣xI[i]∣+5),∣xI[i]∣>6DI,3={∣xI[i]∣−2,∣xI[i]∣≤4−∣xI[i]∣+6,xI[i]>4 \begin{align*} D_{I,1}&=\begin{cases} x_{I}[i], & |x_{I}[i]|\leq 2 \\ 2(x_{I}[i]-1),& 2<x_{I}[i] \leq 4 \\ 3(x_{I}[i]-2),& 4<x_{I}[i]\leq 6\\ 4(x_{I}[i]-3), & x_{I}[i] >6\\ 2(x_{I}[i]+1), & -4\leq x_{I}[i]<-2\\ 3(x_{I}[i]+2), & -6 \leq x_{I}[i]<-4\\ 4(x_{I}[i]+3),& x_{I}[i]<-6> \end{cases}\\ D_{I,2}&=\begin{cases} 2(-|x_{I}[i]|+3), & |x_{I}[i]|\leq 2 \\ 4-|x_{I}[i]|,& 2 <|x_{I}[i]| \leq 6 \\ 2(-|x_{I}[i]|+5),&|x_{I}[i]|>6 \end{cases}\\ D_{I,3}&=\begin{cases} |x_{I}[i]|-2, & |x_{I}[i]|\leq 4 \\ -|x_{I}[i]|+6,& x_{I}[i]>4 \\ \end{cases}\\ \end{align*} DI,1DI,2DI,3=xI[i],2(xI[i]1),3(xI[i]2),4(xI[i]3),2(xI[i]+1),3(xI[i]+2),4(xI[i]+3),xI[i]22<xI[i]44<xI[i]6xI[i]>64xI[i]<26xI[i]<4xI[i]<6>=2(xI[i]+3),4xI[i],2(xI[i]+5),xI[i]22<xI[i]6xI[i]>6={xI[i]2,xI[i]+6,xI[i]4xI[i]>4
同理256QAM信号有如下公式:
b0b_{0}b0星座点
在这里插入图片描述

b1b_{1}b1星座点
在这里插入图片描述

b2b_{2}b2星座点
在这里插入图片描述

b3b_{3}b3星座点
在这里插入图片描述

DI,1={8∗(xI[i]+7),xI[i]<−147∗(xI[i]+6),−14≤xI[i]<−126∗(xI[i]+5),−12≤xI[i]<−105∗(xI[i]+4),−10≤xI[i]<−84∗(xI[i]+3),−8≤xI[i]<−63∗(xI[i]+2),−6≤xI[i]<−42∗(xI[i]+2),−4≤xI[i]<−2xI[i],−2≤xI[i]<22∗(xI[i]−1),2≤xI[i]<43∗(xI[i]−2),4≤xI[i]<64∗(xI[i]−3),6≤xI[i]<85∗(xI[i]−4),8≤xI[i]<106∗(xI[i]−5),10≤xI[i]<127∗(xI[i]−6),12≤xI[i]<148∗(xI[i]−7),14≤xI[i]DI,2={4∗(−∣xI[i]∣+11),∣xI[i]∣≥143∗(−∣xI[i]∣+10),12≤∣xI[i]∣<142∗(−∣xI[i]∣+9),10≤∣xI[i]∣<121∗(−∣xI[i]∣+8),6≤∣xI[i]∣<102∗(−∣xI[i]∣+7),4≤∣xI[i]∣<63∗(−∣xI[i]∣+6),2≤∣xI[i]∣<44∗(−∣xI[i]∣+5),∣xI[i]∣<2DI,3={2∗(−∣xI[i]∣+13),14≤∣xI[i]∣1(−∣xI[i]∣+12),10≤∣xI[i]∣<142(−∣xI[i]∣+11),8≤∣xI[i]∣<102(∣xI[i]∣−5),6≤∣xI[i]∣<8∣xI[i]∣−4,2≤∣xI[i]∣<62(∣xI[i]∣−3),∣xI[i]∣<2DI,4={−∣xI[i]∣+14,12≤∣xI[i]∣∣xI[i]∣−10,8≤∣xI[i]∣<12−∣xI[i]∣+6,4≤∣xI[i]∣<8∣xI[i]∣−2,∣xI[i]∣<4 \begin{align*} D_{I,1}&=\begin{cases} 8*(x_{I}[i]+7), & x_{I}[i] < -14 \\ 7*(x_{I}[i]+6), & -14\leq x_{I}[i]< -12 \\ 6*(x_{I}[i]+5), &-12 \leq x_{I}[i]<-10\\ 5*(x_{I}[i]+4), &-10 \leq x_{I}[i]<-8\\ 4*(x_{I}[i]+3), &-8 \leq x_{I}[i]<-6\\ 3*(x_{I}[i]+2), &-6 \leq x_{I}[i]<-4\\ 2*(x_{I}[i]+2), &-4\leq x_{I}[i]<-2\\ x_{I}[i], & -2\leq x_{I}[i]<2\\ 2*(x_{I}[i]-1), &2 \leq x_{I}[i] <4\\ 3*(x_{I}[i]-2), &4 \leq x_{I}[i] <6 \\ 4*(x_{I}[i]-3), &6 \leq x_{I}[i] <8\\ 5*(x_{I}[i]-4), &8 \leq x_{I}[i] <10\\ 6*(x_{I}[i]-5), &10 \leq x_{I}[i] <12\\ 7*(x_{I}[i]-6), &12 \leq x_{I}[i] <14\\ 8*(x_{I}[i]-7), &14 \leq x_{I}[i]\\ \end{cases}\\ \\ D_{I,2}&=\begin{cases} 4*(-|x_{I}[i]|+11), & |x_{I}[i]|\geq 14 \\ 3*(-|x_{I}[i]|+10), & 12 \leq |x_{I}[i]|< 14 \\ 2*(-|x_{I}[i]|+9), & 10 \leq |x_{I}[i]|< 12 \\ 1*(-|x_{I}[i]|+8), & 6 \leq |x_{I}[i]|< 10 \\ 2*(-|x_{I}[i]|+7), & 4 \leq |x_{I}[i]|< 6 \\ 3*(-|x_{I}[i]|+6), & 2 \leq |x_{I}[i]|< 4 \\ 4*(-|x_{I}[i]|+5), & |x_{I}[i]|< 2 \\ \end{cases}\\ \\ D_{I,3}&=\begin{cases} 2*(-|x_{I}[i]|+13), & 14 \leq |x_{I}[i]|\\ 1(-|x_{I}[i]|+12), & 10 \leq |x_{I}[i]| <14 \\ 2(-|x_{I}[i]|+11), & 8 \leq |x_{I}[i]| <10 \\ 2(|x_{I}[i]|-5), & 6 \leq |x_{I}[i]| <8 \\ |x_{I}[i]|-4, & 2 \leq |x_{I}[i]| <6 \\ 2(|x_{I}[i]|-3), & |x_{I}[i]| <2 \\ \end{cases}\\ \\ D_{I,4}&=\begin{cases} -|x_{I}[i]|+14, & 12 \leq |x_{I}[i]|\\ |x_{I}[i]|-10, & 8 \leq |x_{I}[i]|<12\\ -|x_{I}[i]|+6, & 4 \leq |x_{I}[i]|<8\\ |x_{I}[i]|-2, & |x_{I}[i]|<4\\ \end{cases}\\ \end{align*} DI,1DI,2DI,3DI,4=8(xI[i]+7),7(xI[i]+6),6(xI[i]+5),5(xI[i]+4),4(xI[i]+3),3(xI[i]+2),2(xI[i]+2),xI[i],2(xI[i]1),3(xI[i]2),4(xI[i]3),5(xI[i]4),6(xI[i]5),7(xI[i]6),8(xI[i]7),xI[i]<1414xI[i]<1212xI[i]<1010xI[i]<88xI[i]<66xI[i]<44xI[i]<22xI[i]<22xI[i]<44xI[i]<66xI[i]<88xI[i]<1010xI[i]<1212xI[i]<1414xI[i]=4(xI[i]+11),3(xI[i]+10),2(xI[i]+9),1(xI[i]+8),2(xI[i]+7),3(xI[i]+6),4(xI[i]+5),xI[i]1412xI[i]<1410xI[i]<126xI[i]<104xI[i]<62xI[i]<4xI[i]<2=2(xI[i]+13),1(xI[i]+12),2(xI[i]+11),2(xI[i]5),xI[i]4,2(xI[i]3),14xI[i]10xI[i]<148xI[i]<106xI[i]<82xI[i]<6xI[i]<2=xI[i]+14,xI[i]10,xI[i]+6,xI[i]2,12xI[i]8xI[i]<124xI[i]<8xI[i]<4
同理针对Q路是同样的原理只需要,将xI[i]x_{I}[i]xI[i]替换成xQ[i]x_{Q}[i]xQ[i]

更进一步的简化:
16QAM
在这里插入图片描述

DI,1=xI[i],DI,2=−∣DI,1∣+2 \begin{align*} D_{I,1}&=x_{I}[i],\\ D_{I,2}&=-|D_{I,1}|+2 \end{align*} DI,1DI,2=xI[i],=DI,1+2

64QAM
在这里插入图片描述

DI,1⋍xI[i],DI,2⋍−∣DI,1∣+4DI,3⋍−∣DI,2∣∣+2 \begin{align*} D_{I,1}&\backsimeq x_{I}[i],\\ D_{I,2}&\backsimeq -|D_{I,1}|+4\\ D_{I,3}&\backsimeq -|D_{I,2}||+2 \end{align*} DI,1DI,2DI,3xI[i],DI,1+4DI,2∣∣+2
256QAM
在这里插入图片描述

DI,1⋍xI[i],DI,2⋍−∣DI,1∣+8DI,3⋍−∣DI,2∣+4DI,4⋍−∣DI,3∣+2 \begin{align*} D_{I,1}&\backsimeq x_{I}[i],\\ D_{I,2}&\backsimeq -|D_{I,1}|+8\\ D_{I,3}&\backsimeq -|D_{I,2}|+4\\ D_{I,4}&\backsimeq -|D_{I,3}|+2\\ \end{align*} DI,1DI,2DI,3DI,4xI[i],DI,1+8DI,2+4DI,3+2

假设QAM信号比特数目为mmm,令d=2m2−1,m=4,6,8d=2^{\frac{m}{2}-1},m=4,6,8d=22m1,m=4,6,8
DI,1⋍xI[i],DI,i⋍−∣DI,1∣+d>>(i−1),i=0:1:(2,3,4) \begin{align*} D_{I,1}&\backsimeq x_{I}[i],\\ D_{I,i}&\backsimeq -|D_{I,1}|+d>>(i-1),i=0:1:(2,3,4)\\ \end{align*} DI,1DI,ixI[i],DI,1+d>>(i1),i=0:1:(2,3,4)

【1】Simplified Soft-Output Demapper for Binary Interleaved COFDM with Application to HIPERLAN/2
【2】A Low Complexity 256QAM Soft Demapper for 5G Mobile System

http://www.xdnf.cn/news/1445581.html

相关文章:

  • C/C++ 中的inline(内联函数关键字)详解
  • 功能持续优化,应用商店新增CRM分类,1Panel v2.0.10版本正式发布
  • VMware Workstation 磁盘空间不足扩容
  • 【论文阅读】InnerGS: Internal Scenes Rendering via Factorized 3D Gaussian Splatting
  • Linux_网络基础
  • C++学习 part1
  • keepalived高可用
  • 基于单片机PWM信号发生器系统Proteus仿真(含全部资料)
  • 2025年最新 unityHub游戏引擎开发2d手机游戏和桌面游戏教程
  • 使用飞算JavaAI快速搭建酒店管理系统
  • 部署MYSQL主从同步超详细过程
  • bootloader相关实现
  • 逻辑回归 vs 支持向量机 vs 随机森林:哪个更适合小数据集?
  • 中通笔试ShowMeBug编程题复盘
  • 免费的PDF工具箱软件,免费PDF转word,PDF合并,PDF24下载,24个功能
  • Corona 13 渲染器安装与使用教程(适用于3ds Max 2016–2026)
  • 408考研——单链表代码题常见套路总结
  • 有奖直播 | 如何高效测试ADC/DAC?德思特一站式方案,让测试效率倍速提升!
  • 【Linux操作系统】简学深悟启示录:进程控制
  • 1983:ARPANET向互联网的转变
  • test命令与参数
  • Kotlin编程学习记录2
  • Linux `epoll` 机制的入口——`epoll_create`函数
  • 自由学习记录(92)
  • 图像正向扭曲反向扭曲
  • 关于缓存的一些思考?
  • 从Java全栈到前端框架:一次真实的面试对话
  • 自动化运维-ansible中对于大项目的管理
  • HTML第八课:HTML4和HTML5的区别
  • 网络通信与协议栈 -- OSI,TCP/IP模型,协议族,UDP编程