当前位置: 首页 > news >正文

奥比中光双目摄像头实现物品抓取的机器人系统

一个完整的方案,介绍如何使用奥比中光(Orbbec)双目摄像头获取物品位置并实现机器人抓取功能。

1. 系统架构概述

text

[奥比中光摄像头] → [点云数据处理] → [物品识别定位] → [运动规划] → [机械臂控制]

2. 硬件准备

  • 奥比中光 Astra/Astra Pro 或 Femto 系列深度摄像头

  • ROS2兼容的机械臂(如UR, Franka, xArm等)

  • 计算平台(如NVIDIA Jetson或高性能PC)

3. ROS2软件配置

3.1 安装奥比中光ROS2驱动

bash

sudo apt install ros-${ROS_DISTRO}-libuvc-camera
sudo apt install ros-${ROS_DISTRO}-camera-calibration# 从源码安装Orbbec ROS2驱动
mkdir -p ~/orbbec_ws/src
cd ~/orbbec_ws/src
git clone https://github.com/orbbec/ros2_astra_camera.git
cd ..
rosdep install --from-paths src --ignore-src -r -y
colcon build --symlink-install
source install/setup.bash

3.2 启动摄像头节点

bash

ros2 launch astra_camera astra.launch.py

4. 物品识别与定位实现

4.1 创建ROS2包

bash

ros2 pkg create object_grasping --build-type ament_cmake \
--dependencies rclcpp rclcpp_components cv_bridge image_transport \
pcl_conversions pcl_ros tf2 tf2_ros tf2_geometry_msgs moveit_core \
moveit_ros_planning_interface

4.2 物品检测节点实现 (C++)

src/object_detector.cpp:

cpp

#include <rclcpp/rclcpp.hpp>
#include <sensor_msgs/msg/image.hpp>
#include <sensor_msgs/msg/point_cloud2.hpp>
#include <vision_msgs/msg/detection3_d_array.hpp>
#include <cv_bridge/cv_bridge.h>
#include <pcl/point_cloud.h>
#include <pcl/point_types.h>
#include <pcl_conversions/pcl_conversions.h>
#include <pcl/filters/passthrough.h>
#include <pcl/segmentation/extract_clusters.h>class ObjectDetector : public rclcpp::Node
{
public:ObjectDetector() : Node("object_detector"){// 订阅深度点云pointcloud_sub_ = this->create_subscription<sensor_msgs::msg::PointCloud2>("/camera/depth/points", 10,std::bind(&ObjectDetector::pointcloudCallback, this, std::placeholders::_1));// 发布检测结果detection_pub_ = this->create_publisher<vision_msgs::msg::Detection3DArray>("/detected_objects", 10);// 参数声明this->declare_parameter("cluster_tolerance", 0.02);this->declare_parameter("min_cluster_size", 100);this->declare_parameter("max_cluster_size", 25000);this->declare_parameter("workspace_height", 0.8);}private:void pointcloudCallback(const sensor_msgs::msg::PointCloud2::SharedPtr msg){// 转换为PCL点云pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);pcl::fromROSMsg(*msg, *cloud);// 1. 预处理 - 去除NaN点和无效点pcl::PointCloud<pcl::PointXYZ>::Ptr filtered_cloud(new pcl::PointCloud<pcl::PointXYZ>);std::vector<int> indices;pcl::removeNaNFromPointCloud(*cloud, *filtered_cloud, indices);// 2. 工作空间限制 (可根据实际情况调整)double workspace_height = this->get_parameter("workspace_height").as_double();pcl::PassThrough<pcl::PointXYZ> pass;pass.setInputCloud(filtered_cloud);pass.setFilterFieldName("z");pass.setFilterLimits(0.0, workspace_height);pass.filter(*filtered_cloud);// 3. 欧式聚类分割pcl::search::KdTree<pcl::PointXYZ>::Ptr tree(new pcl::search::KdTree<pcl::PointXYZ>);tree->setInputCloud(filtered_cloud);std::vector<pcl::PointIndices> cluster_indices;pcl::EuclideanClusterExtraction<pcl::PointXYZ> ec;ec.setClusterTolerance(this->get_parameter("cluster_tolerance").as_double());ec.setMinClusterSize(this->get_parameter("min_cluster_size").as_int());ec.setMaxClusterSize(this->get_parameter("max_cluster_size").as_int());ec.setSearchMethod(tree);ec.setInputCloud(filtered_cloud);ec.extract(cluster_indices);// 4. 计算每个聚类的位置和边界框vision_msgs::msg::Detection3DArray detections;detections.header = msg->header;for (const auto& cluster : cluster_indices) {// 计算质心Eigen::Vector4f centroid;pcl::compute3DCentroid(*filtered_cloud, cluster, centroid);// 计算边界框pcl::PointXYZ min_pt, max_pt;pcl::getMinMax3D(*filtered_cloud, cluster, min_pt, max_pt);// 创建检测消息vision_msgs::msg::Detection3D detection;detection.header = msg->header;detection.bbox.center.position.x = centroid[0];detection.bbox.center.position.y = centroid[1];detection.bbox.center.position.z = centroid[2];detection.bbox.size.x = max_pt.x - min_pt.x;detection.bbox.size.y = max_pt.y - min_pt.y;detection.bbox.size.z = max_pt.z - min_pt.z;detections.detections.push_back(detection);}// 发布检测结果detection_pub_->publish(detections);}rclcpp::Subscription<sensor_msgs::msg::PointCloud2>::SharedPtr pointcloud_sub_;rclcpp::Publisher<vision_msgs::msg::Detection3DArray>::SharedPtr detection_pub_;
};int main(int argc, char** argv)
{rclcpp::init(argc, argv);auto node = std::make_shared<ObjectDetector>();rclcpp::spin(node);rclcpp::shutdown();return 0;
}

5. 机械臂抓取控制实现

5.1 运动规划节点 (Python)

scripts/motion_planner.py:

python

#!/usr/bin/env python3
import rclpy
from rclpy.node import Node
from vision_msgs.msg import Detection3DArray
from geometry_msgs.msg import PoseStamped
from moveit_msgs.srv import GetMotionPlan
from moveit_msgs.msg import MotionPlanRequest, Constraints, JointConstraint
from trajectory_msgs.msg import JointTrajectoryclass MotionPlanner(Node):def __init__(self):super().__init__('motion_planner')# 订阅检测到的物品self.subscription = self.create_subscription(Detection3DArray,'/detected_objects',self.detection_callback,10)# MoveIt运动规划服务客户端self.planning_client = self.create_client(GetMotionPlan,'/plan_kinematic_path')# 机械臂轨迹发布self.trajectory_pub = self.create_publisher(JointTrajectory,'/arm_controller/joint_trajectory',10)# 抓取参数self.declare_parameter('pregrasp_offset', 0.15)self.declare_parameter('grasp_duration', 2.0)def detection_callback(self, msg):if not msg.detections:return# 选择最近的物体target = min(msg.detections, key=lambda d: d.bbox.center.position.x**2 + d.bbox.center.position.y**2)# 创建预抓取位姿pregrasp_pose = PoseStamped()pregrasp_pose.header = msg.headerpregrasp_pose.pose = target.bbox.center# 在Z轴上添加偏移offset = self.get_parameter('pregrasp_offset').valuepregrasp_pose.pose.position.z += offset# 规划运动self.plan_and_execute(pregrasp_pose)# 执行抓取self.perform_grasp(target)def plan_and_execute(self, target_pose):# 创建运动规划请求request = MotionPlanRequest()request.workspace_parameters.header = target_pose.headerrequest.start_state.is_diff = True# 添加目标约束constraints = Constraints()joint_constraint = JointConstraint()joint_constraint.tolerance_above = 0.1joint_constraint.tolerance_below = 0.1joint_constraint.weight = 1.0# 这里需要根据你的机械臂配置设置目标关节值# 示例为6自由度机械臂for i in range(6):joint_constraint.joint_name = f"joint_{i+1}"joint_constraint.position = 0.0  # 应根据目标位姿计算constraints.joint_constraints.append(joint_constraint)request.goal_constraints.append(constraints)# 调用规划服务while not self.planning_client.wait_for_service(timeout_sec=1.0):self.get_logger().info('等待规划服务...')future = self.planning_client.call_async(GetMotionPlan.Request(request=request))rclpy.spin_until_future_complete(self, future)if future.result().motion_plan_response.error_code.val == 1:  # SUCCESS# 执行轨迹trajectory = future.result().motion_plan_response.trajectory.joint_trajectoryself.trajectory_pub.publish(trajectory)else:self.get_logger().error('运动规划失败!')def perform_grasp(self, target):# 这里实现具体的抓取逻辑# 1. 移动到精确抓取位置# 2. 控制夹爪闭合# 3. 验证抓取是否成功# 4. 移动到放置位置self.get_logger().info(f'正在抓取位于 ({target.bbox.center.position.x:.2f}, 'f'{target.bbox.center.position.y:.2f}, 'f'{target.bbox.center.position.z:.2f}) 的物体')def main(args=None):rclpy.init(args=args)planner = MotionPlanner()rclpy.spin(planner)planner.destroy_node()rclpy.shutdown()if __name__ == '__main__':main()

6. 系统集成与启动

创建启动文件 launch/grasping.launch.py:

python

from launch import LaunchDescription
from launch_ros.actions import Node
from ament_index_python.packages import get_package_share_directorydef generate_launch_description():return LaunchDescription([# 启动奥比中光摄像头Node(package='astra_camera',executable='astra_camera_node',name='camera',output='screen',parameters=[{'depth_registration': True,'color_depth_synchronization': True,'depth_mode': '640x480','color_mode': '640x480',}]),# 物品检测节点Node(package='object_grasping',executable='object_detector',name='object_detector',output='screen'),# 运动规划节点Node(package='object_grasping',executable='motion_planner.py',name='motion_planner',output='screen'),# RViz可视化 (可选)Node(package='rviz2',executable='rviz2',name='rviz2',arguments=['-d', f'{get_package_share_directory("object_grasping")}/config/grasping.rviz'])])

7. 系统优化建议

  1. 物品识别改进:

    • 集成深度学习模型(YOLO, Mask R-CNN)提高识别准确率

    • 添加物品分类功能,针对不同类型物品采用不同抓取策略

  2. 抓取规划优化:

    • 使用Grasp Pose Detection (GPD)算法生成最佳抓取位姿

    • 集成Force-Torque传感器实现自适应抓取力控制

  3. 系统鲁棒性增强:

    • 添加状态监测和错误恢复机制

    • 实现视觉伺服(Visual Servoing)提高抓取精度

  4. 性能优化:

    • 使用GPU加速点云处理和深度学习推理

    • 优化运动规划算法减少计算时间

8. 实际部署注意事项

  1. 相机标定:

    • 确保完成相机内参和外参标定

    • 定期检查标定结果,防止机械振动导致偏差

  2. 坐标系对齐:

    • 正确设置相机到机械臂基座的TF变换

    • 使用AR Marker或其他方法验证坐标系对齐

  3. 安全措施:

    • 设置合理的工作空间限制

    • 添加紧急停止和碰撞检测功能

http://www.xdnf.cn/news/1157473.html

相关文章:

  • 【Lua】多脚本引用
  • 数据结构 | 栈:构建高效数据处理的基石
  • Docker Compose
  • LeetCode 198 打家劫舍 LeetCode 213.打家劫舍II
  • Kotlin函数式接口
  • 力扣:动态规划java
  • kotlin Flow快速学习2025
  • 算法训练营DAY36 第九章 动态规划part04
  • Request和Response相关介绍
  • 数字图像处理(四:图像如果当作矩阵,那加减乘除处理了矩阵,那图像咋变):从LED冬奥会、奥运会及春晚等等大屏,到手机小屏,快来挖一挖里面都有什么
  • 《计算机网络》实验报告三 UDP协议分析
  • STM32-第八节-TIM定时器-4(编码器接口)
  • C++虚函数易错点整理
  • Python dataclass 高阶用法与技巧
  • springboot-profile
  • Direct3D 11学习(一)
  • 数学专业转行做大数据容易吗?需要补什么?
  • Web服务压力测试工具hey学习一:使用方法
  • 如何解决pip安装报错error subprocess-exited-with-error问题
  • 力扣面试150题--搜索插入位置
  • 30天打牢数模基础-灰色预测模型讲解
  • BLIP、InternVL Series(下)
  • Eureka+LoadBalancer实现服务注册与发现
  • JavaScript 对象操作、继承与模块化实现
  • RCE随笔(1)
  • 使用 Pyecharts 绘制精美饼状图:从基础到高级技巧
  • 【LeetCode 热题 100】236. 二叉树的最近公共祖先——DFS
  • Effective Python 条款13:通过带星号的unpacking操作来捕获多个元素,不要用切片
  • 构建一个简单的Java框架来测量并发执行任务的时间
  • 深入浅出理解动态规划