当前位置: 首页 > news >正文

Pythonday17

@浙大疏锦行 Python day17.

内容:

  • 无监督聚类算法,类似与特征工程,引入新的特征(类别),也可以引入到分类边界的距离等作为新的特征。
  • 常见聚类算法:kmeans聚类、dbscan聚类、层次聚类,具体的算法思想不在此详细叙述
  • 聚类效果评估指标:轮廓系数、CH指数以及DB指数
  • 聚类前需要标准化数据,聚类后可以进行可视化(t-sne或者pca)

代码:

  • Kmeans
import numpy as np
import pandas as pd
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
from sklearn.metrics import silhouette_score, calinski_harabasz_score, davies_bouldin_score
import matplotlib.pyplot as plt
import seaborn as sns# 评估不同 k 值下的指标
k_range = range(2, 11)  # 测试 k 从 2 到 10
inertia_values = []
silhouette_scores = []
ch_scores = []
db_scores = []for k in k_range:kmeans = KMeans(n_clusters=k, random_state=42)kmeans_labels = kmeans.fit_predict(X_scaled)inertia_values.append(kmeans.inertia_)  # 惯性(肘部法则)silhouette = silhouette_score(X_scaled, kmeans_labels)  # 轮廓系数silhouette_scores.append(silhouette)ch = calinski_harabasz_score(X_scaled, kmeans_labels)  # CH 指数ch_scores.append(ch)db = davies_bouldin_score(X_scaled, kmeans_labels)  # DB 指数db_scores.append(db)print(f"k={k}, 惯性: {kmeans.inertia_:.2f}, 轮廓系数: {silhouette:.3f}, CH 指数: {ch:.2f}, DB 指数: {db:.3f}")# 绘制评估指标图
plt.figure(figsize=(15, 10))# 肘部法则图(Inertia)
plt.subplot(2, 2, 1)
plt.plot(k_range, inertia_values, marker='o')
plt.title('肘部法则确定最优聚类数 k(惯性,越小越好)')
plt.xlabel('聚类数 (k)')
plt.ylabel('惯性')
plt.grid(True)# 轮廓系数图
plt.subplot(2, 2, 2)
plt.plot(k_range, silhouette_scores, marker='o', color='orange')
plt.title('轮廓系数确定最优聚类数 k(越大越好)')
plt.xlabel('聚类数 (k)')
plt.ylabel('轮廓系数')
plt.grid(True)# CH 指数图
plt.subplot(2, 2, 3)
plt.plot(k_range, ch_scores, marker='o', color='green')
plt.title('Calinski-Harabasz 指数确定最优聚类数 k(越大越好)')
plt.xlabel('聚类数 (k)')
plt.ylabel('CH 指数')
plt.grid(True)# DB 指数图
plt.subplot(2, 2, 4)
plt.plot(k_range, db_scores, marker='o', color='red')
plt.title('Davies-Bouldin 指数确定最优聚类数 k(越小越好)')
plt.xlabel('聚类数 (k)')
plt.ylabel('DB 指数')
plt.grid(True)plt.tight_layout()
plt.show()
  • dbscan
import numpy as np
import pandas as pd
from sklearn.cluster import DBSCAN
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
from sklearn.metrics import silhouette_score, calinski_harabasz_score, davies_bouldin_score
import matplotlib.pyplot as plt
import seaborn as sns# 评估不同 eps 和 min_samples 下的指标
# eps这个参数表示邻域的半径,min_samples表示一个点被认为是核心点所需的最小样本数。
# min_samples这个参数表示一个核心点所需的最小样本数。eps_range = np.arange(0.3, 0.8, 0.1)  # 测试 eps 从 0.3 到 0.7
min_samples_range = range(3, 8)  # 测试 min_samples 从 3 到 7
results = []for eps in eps_range:for min_samples in min_samples_range:dbscan = DBSCAN(eps=eps, min_samples=min_samples)dbscan_labels = dbscan.fit_predict(X_scaled)# 计算簇的数量(排除噪声点 -1)n_clusters = len(np.unique(dbscan_labels)) - (1 if -1 in dbscan_labels else 0)# 计算噪声点数量n_noise = list(dbscan_labels).count(-1)# 只有当簇数量大于 1 且有有效簇时才计算评估指标if n_clusters > 1:# 排除噪声点后计算评估指标mask = dbscan_labels != -1if mask.sum() > 0:  # 确保有非噪声点silhouette = silhouette_score(X_scaled[mask], dbscan_labels[mask])ch = calinski_harabasz_score(X_scaled[mask], dbscan_labels[mask])db = davies_bouldin_score(X_scaled[mask], dbscan_labels[mask])results.append({'eps': eps,'min_samples': min_samples,'n_clusters': n_clusters,'n_noise': n_noise,'silhouette': silhouette,'ch_score': ch,'db_score': db})print(f"eps={eps:.1f}, min_samples={min_samples}, 簇数: {n_clusters}, 噪声点: {n_noise}, "f"轮廓系数: {silhouette:.3f}, CH 指数: {ch:.2f}, DB 指数: {db:.3f}")else:print(f"eps={eps:.1f}, min_samples={min_samples}, 簇数: {n_clusters}, 噪声点: {n_noise}, 无法计算评估指标")# 将结果转为 DataFrame 以便可视化和选择参数
results_df = pd.DataFrame(results)
  • 层次聚类
import numpy as np
import pandas as pd
from sklearn.cluster import AgglomerativeClustering
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
from sklearn.metrics import silhouette_score, calinski_harabasz_score, davies_bouldin_score
import matplotlib.pyplot as plt
import seaborn as sns# 标准化数据
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)# 评估不同 n_clusters 下的指标
n_clusters_range = range(2, 11)  # 测试簇数量从 2 到 10
silhouette_scores = []
ch_scores = []
db_scores = []for n_clusters in n_clusters_range:agglo = AgglomerativeClustering(n_clusters=n_clusters, linkage='ward')  # 使用 Ward 准则合并簇agglo_labels = agglo.fit_predict(X_scaled)# 计算评估指标silhouette = silhouette_score(X_scaled, agglo_labels)ch = calinski_harabasz_score(X_scaled, agglo_labels)db = davies_bouldin_score(X_scaled, agglo_labels)silhouette_scores.append(silhouette)ch_scores.append(ch)db_scores.append(db)print(f"n_clusters={n_clusters}, 轮廓系数: {silhouette:.3f}, CH 指数: {ch:.2f}, DB 指数: {db:.3f}")# 绘制评估指标图
plt.figure(figsize=(15, 5))# 轮廓系数图
plt.subplot(1, 3, 1)
plt.plot(n_clusters_range, silhouette_scores, marker='o')
plt.title('轮廓系数确定最优簇数(越大越好)')
plt.xlabel('簇数量 (n_clusters)')
plt.ylabel('轮廓系数')
plt.grid(True)# CH 指数图
plt.subplot(1, 3, 2)
plt.plot(n_clusters_range, ch_scores, marker='o')
plt.title('Calinski-Harabasz 指数确定最优簇数(越大越好)')
plt.xlabel('簇数量 (n_clusters)')
plt.ylabel('CH 指数')
plt.grid(True)# DB 指数图
plt.subplot(1, 3, 3)
plt.plot(n_clusters_range, db_scores, marker='o')
plt.title('Davies-Bouldin 指数确定最优簇数(越小越好)')
plt.xlabel('簇数量 (n_clusters)')
plt.ylabel('DB 指数')
plt.grid(True)plt.tight_layout()
plt.show()
http://www.xdnf.cn/news/1140499.html

相关文章:

  • 群晖中相册管理 immich大模型的使用
  • C++ :vector的介绍和使用
  • MyBatis:配置文件完成增删改查_添加
  • 【RAG实战】用户反馈如何关联算法优化
  • Redisson 分布式锁
  • 构建智能客服Agent:从需求分析到生产部署
  • 使用 jar -xvf 解压JAR文件无反应怎么办?
  • 打车代驾 app 订单管理系统模块搭建
  • IDEA高效开发:Database Navigator插件安装与核心使用指南
  • Android studio和gradle升级后的一些错误
  • 进阶向:智能图像增强系统
  • 零售快销行业中线下巡店AI是如何颠覆传统计算机视觉识别的详细解决方案
  • Python爬虫入门到实战(3)-对网页进行操作
  • Linux 定时任务全解析:atd 与 crond 的区别及实战案例(含日志备份 + 时间写入)
  • 黑马Node.js全套入门教程,nodejs新教程含es6模块化+npm+express+webpack+promise等_ts对象笔记
  • 【问题解决】npm包下载速度慢
  • AI与BI的融合挑战:Strategy平台的差异化优势
  • 小白学Python,网络爬虫篇(2)——selenium库
  • (5)颜色的灰度,亮度,对比度,透明度,都啥意思
  • 零基础入门:用按键精灵实现视频自动操作(附完整脚本)
  • Instagram千号矩阵:亚矩阵云手机破解设备指纹检测的终极方案
  • 安全加固Linux内核参数对容器平台的影响评估
  • 《5分钟开发订单微服务!飞算JavaAI实战:IDEA插件安装→空指针修复→K8s部署全流程》
  • 《python语言程序设计》2018版第8章8题编写函数实现二进制转十进制(字符串变整数)!!整数没法进行下标
  • Paimon 动态分桶
  • 深入理解Java中的Map.Entry接口
  • 力扣每日一题--2025.7.17
  • 五分钟学会大数定律【笔记】
  • VOTE:基于轨迹集成投票的视觉-语言-动作模型优化
  • Clip微调系列:《MaPLe: Multi-modal Prompt Learning》