DeepForest开源程序是用于 Airborne RGB 机器学习的 Python 软件包
一、软件介绍
文末提供程序和源码下载
DeepForest 是一个 python 包,用于训练和预测机载图像中的生态对象。DeepForest 目前附带了树冠对象检测模型和鸟类检测模型。两者都是单类模块,可以根据新数据扩展到物种分类。用户可以通过注释和训练自定义模型来扩展这些模型。
二、deepforest 的工作原理是什么?
DeepForest 使用深度学习对象检测网络来预测与 RGB 图像中单个树木对应的边界框。DeepForest 基于 torchvision 包中的对象检测模块构建,旨在简化检测训练模型。
For more about the motivation behind DeepForest, see some recent talks we have given on computer vision for ecology and practical applications to machine learning in environmental monitoring.
有关 DeepForest 背后的动机的更多信息,请参阅我们最近发表的一些关于生态学计算机视觉和机器学习在环境监测中的实际应用的演讲。
Why DeepForest? 为什么选择 DeepForest?
Remote sensing can transform the speed, scale, and cost of biodiversity and forestry surveys. Data acquisition currently outpaces the ability to identify individual organisms in high-resolution imagery. Individual crown delineation has been a long-standing challenge in remote sensing, and available algorithms produce mixed results. DeepForest is the first open-source implementation of a deep learning model for crown detection. Deep learning has made enormous strides in a range of computer vision tasks but requires significant amounts of training data. By including a trained model, we hope to simplify the process of retraining deep learning models for a range of forests, sensors, and spatial resolutions.
遥感可以改变生物多样性和林业调查的速度、规模和成本。目前,数据采集的速度超过了在高分辨率图像中识别单个生物体的能力。单个树冠的描绘一直是遥感领域长期面临的挑战,可用的算法会产生喜忧参半的结果。DeepForest 是用于牙冠检测的深度学习模型的第一个开源实现。深度学习在一系列计算机视觉任务中取得了长足的进步,但需要大量的训练数据。通过包含经过训练的模型,我们希望简化针对一系列森林、传感器和空间分辨率重新训练深度学习模型的过程。
三、软件下载
夸克网盘分享
本文信息来源于GitHub作者地址:https://github.com/weecology/DeepForest