当前位置: 首页 > news >正文

轻量级密码算法CHAM的python实现

一、CHAM算法介绍

CHAM是B Koo等人专为资源受限设备设计的轻量级分组密码算法,其核心优势在于硬件高效性和软件友好性。该算法采用ARX结构(加法-循环移位-异或),通过4分支广义Feistel网络实现数据加密。分组长度支持64位和128位,密钥长度则涵盖128位和256位,可根据不同安全需求灵活选择。标准文档下载地址为:CHAM: A Family of Lightweight Block Ciphers for Resource-Constrained Devices。

轮函数根据轮次奇偶性交替使用两种操作模式,偶数轮执行1位和8位的组合移位,奇数轮则采用8位和1位的反向组合,这种交替策略有效增强了算法的扩散特性。轮序号直接作为输入异或项,既简化了实现,又有效抵御了滑动攻击。密钥扩展采用无状态实时计算方式,通过线性变换Φ从主密钥直接生成轮密钥,避免了中间状态的存储需求,在硬件实现上可节省74%的触发器资源。每个主密钥字并行生成两个轮密钥,并通过索引复用技术使得16个轮密钥即可覆盖80轮加密,大幅降低了存储开销。

二、Python实现

下面的Python代码可以清晰展现CHAM算法的实现细节。首先定义16位循环左移函数ROL,这是ARX结构的基础操作。密钥扩展函数将128位主密钥转换为16个轮密钥,采用论文中描述的线性变换\phi,通过异或和循环移位操作生成所需的轮密钥。加密函数cham_encrypt实现了完整的80轮Feistel网络,初始将64位明文分为4个16位字,然后根据当前轮次选择对应的操作模式进行迭代计算。每轮更新后对分支进行左移操作,最终将4个分支字重新组合为64位密文。

测试部分使用论文附录A提供的标准测试向量进行验证,运行结果显示生成的密文与论文记载完全一致,证明了实现的正确性。代码实现虽然简洁,但完整呈现了CHAM的核心流程,包括密钥扩展、轮函数迭代和分支处理等关键环节,为理解算法原理提供了直观参考。

def ROL(x, n, bits=16):return ((x << n) | (x >> (bits - n))) & ((1 << bits) - 1)def key_expansion(mkey):rkey = [0] * 16for i in range(8):rkey[i] = mkey[i] ^ ROL(mkey[i], 1) ^ ROL(mkey[i], 8)rkey[(i + 8) ^ 1] = mkey[i] ^ ROL(mkey[i], 1) ^ ROL(mkey[i], 11)return rkeydef cham_encrypt(plaintext, round_keys):block = []for i in range(0, 64, 16):block.append((plaintext >> (48 - i)) & 0xffff)for i in range(80):if i % 2 == 0:temp = ((block[0] ^ (i & 0xFFFF)) + (ROL(block[1], 1) ^ round_keys[i % 16])) & 0xFFFFnew_x3 = ROL(temp, 8)else:temp = ((block[0] ^ (i & 0xFFFF)) + (ROL(block[1], 8) ^ round_keys[i % 16])) & 0xFFFFnew_x3 = ROL(temp, 1)block = [block[1], block[2], block[3], new_x3]ciphertext = (block[0] << 48) | (block[1] << 32) | (block[2] << 16) | block[3]return ciphertextif __name__ == '__main__':plaintext = 0x1100332255447766key = [0x0100, 0x0302, 0x0504, 0x0706, 0x0908, 0x0b0a, 0x0d0c, 0x0f0e]round_keys = key_expansion(key)ciphertext = cham_encrypt(plaintext, round_keys)print(f"明文:{plaintext:016x}")print(f"密钥:{''.join([f'{x:04x}' for x in key])}")print(f"密文:{ciphertext:016x} ")

 

三、总结

CHAM算法通过创新的ARX结构和无状态密钥扩展设计,在资源受限环境中实现了优异的性能表现。其硬件效率显著优于SIMON等同类算法,软件性能也可与SPECK媲美。精心设计的轮函数和充足的轮数为安全性提供了坚实保障,使其成为物联网安全应用的理想选择。Python实现验证了算法的可行性,展现了其简洁而高效的特点。

http://www.xdnf.cn/news/1021879.html

相关文章:

  • 2.线性表的链式存储-链表
  • 【网关】互联网公司的接入网关和业务网关怎么设计
  • 期货反向跟单—盘后注意事项(二)管理事项
  • 企业司法涉诉API (QYGL8271) 技术文档:原始字段全解与风控应用 | 天远API
  • 将 App 安装到 iPhone 真机上测试
  • 【jmeter】报告怎么看
  • 提升开发思维的设计模式(上)
  • 行为模式-迭代器模式
  • JVM常见面试题
  • redis-7.4.4使用
  • 详解deeplabv3+改进思路
  • conda pack迁出环境异常
  • AKS升级路线最佳实践方案
  • dockercompose部署应用
  • 实战案例-JESD204B 多器件同步
  • 协同开发中的移动端网页调试流程:一次团队实战的经验总结(含WebDebugX)
  • Unity 接入抖音小游戏一
  • linux 黑马 第1-2章
  • ELK日志采集系统
  • 通过iframe使用Jupyter notebook
  • shell、bash、cmd、git 和 PowerShell 的区别与关系的详细解析
  • 吃透 Golang 基础:函数
  • 混合云战略规划深度解析:多云管理的技术架构与治理框架
  • 动态规划: 背包DP大合集
  • 【android bluetooth 框架分析 04】【bt-framework 层详解 7】【AdapterProperties介绍】
  • 触觉智能RK3576核心板,工业应用之4K超高清HDMI IN视频输入
  • 基于Python的二手房源信息爬取与分析的设计和实现,7000字论文编写
  • 改写爬虫, unsplash 图片爬虫 (网站改动了,重写爬虫)
  • 给element-plus的table表格加上连续序号
  • Kubernetes 从入门到精通-资源限制