当前位置: 首页 > ds >正文

分类预测 | Matlab实现ABC-Transformer人工蜂群算法优化编码器多特征分类预测/故障诊断Matlab实现

分类预测 | Matlab实现ABC-Transformer人工蜂群算法优化编码器多特征分类预测/故障诊断Matlab实现

目录

    • 分类预测 | Matlab实现ABC-Transformer人工蜂群算法优化编码器多特征分类预测/故障诊断Matlab实现
      • 分类效果
      • 基本描述
      • 程序设计
      • 参考资料

分类效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本描述

1.Matlab实现ABC-Transformer人工蜂群算法优化编码器多特征分类预测/故障诊断,运行环境Matlab2023b及以上;

2.excel数据,方便替换,可在下载区获取数据和程序内容。

3.优化参数为注意力机制头数、学习率、正则化系数,图很多,包括分类效果图,混淆矩阵图,指标含召回率、精确率、F1分数、灵敏度、特异性、曲线下面积等。

4.附赠案例数据可直接运行main一键出图,注意程序和数据放在一个文件夹,运行环境为Matlab2023b及以上。

5.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。可在下载区获取数据和程序内容。

6.data为数据集,输入多个特征,分四类,分类效果如下:

注:程序和数据放在一个文件夹

在这里插入图片描述

程序设计

  • 完整程序和数据私信博主回复Matlab实现ABC-Transformer人工蜂群算法优化编码器多特征分类预测/故障诊断
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行%%  读取数据
res = xlsread('data.xlsx');%%  分析数据
num_class = length(unique(res(:, end)));  % 类别数(Excel最后一列放类别)
num_dim = size(res, 2) - 1;               % 特征维度
num_res = size(res, 1);                   % 样本数(每一行,是一个样本)
num_size = 0.7;                           % 训练集占数据集的比例
res = res(randperm(num_res), :);          % 打乱数据集(不打乱数据时,注释该行)
flag_conusion = 1;                        % 标志位为1,打开混淆矩阵(要求2018版本及以上)%%  设置变量存储数据
P_train = []; P_test = [];
T_train = []; T_test = [];%%  划分数据集
for i = 1 : num_classmid_res = res((res(:, end) == i), :);           % 循环取出不同类别的样本mid_size = size(mid_res, 1);                    % 得到不同类别样本个数mid_tiran = round(num_size * mid_size);         % 得到该类别的训练样本个数end
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行%%  导入数据
res = xlsread('数据集.xlsx');               % 四个类别分别用0 1 2 3表示
rand('state',0);%%  数据分析
num_size = 0.7;                              % 训练集占数据集比例 
outdim = 1;                                  % 最后一列为输出
num_class = length(unique(res(:,end)));      % 计算类别数 
num_samples = size(res, 1);                  % 样本个数
res = res(randperm(num_samples), :);         % 打乱数据集(不希望打乱时,注释该行)
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%%  数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);%%  矩阵转置
p_train = P_train'; p_test = P_test';
t_train = T_train'; t_test = T_test';

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

http://www.xdnf.cn/news/6567.html

相关文章:

  • 抢购Python代码示例与技术解析
  • 1C:ENTERPRISE 8.3 实用开发者指南-示例和标准技术(Session1-Session3)
  • 《模版初阶》
  • matlab多项式
  • 【unity游戏开发——编辑器扩展】EditorGUIUtility提供一些 EditorGUI 相关的其他辅助API
  • 车载诊断架构 ---车载总线对于功能寻址的处理策略
  • 北京孙河傲云源墅:限量典藏的主城墅居臻品
  • 3.3 掌握RDD分区
  • 密码学刷题小记录
  • 一物一码赋能智能制造:MES如何实现生产全流程数字化追溯
  • JAVA单元测试、反射
  • 在ubuntu系统中将vue3的打包文件dist 部署nginx 并且配置ssl证书 以https方式访问
  • 2025年5月15日
  • 广度和深度优先搜索(BFS和DFS)
  • Ubuntu20.04下如何源码编译Carla,使用UE4源码开跑,踩坑集合
  • Secs/Gem第七讲(基于secs4net项目的ChatGpt介绍)
  • 驱动-Linux定时-timer_list
  • ollama 重命名模型
  • 每日一道leetcode(新学数据结构版)
  • CISA 备考通关经验及回忆题分享
  • 1:OpenCV—图像基础
  • python打卡day26
  • 【开源Agent框架】OWL:面向现实任务自动化的多智能体协作框架深度解析
  • 从代码学习深度学习 - 风格迁移 PyTorch版
  • 中国科学院计算所:从 NFS 到 JuiceFS,大模型训推平台存储演进之路
  • 【知识点】大模型面试题汇总(持续更新)
  • SQLPub:一个提供AI助手的免费MySQL数据库服务
  • 智慧化系统安全分析报告
  • AI学习博文链接
  • 12V升24V升压恒压WT3207