当前位置: 首页 > ds >正文

【LeetCode数据结构】栈的应用——有效的括号问题详解


 🔥个人主页:艾莉丝努力练剑

❄专栏传送门:《C语言》、《数据结构与算法》、C语言刷题12天IO强训、LeetCode代码强化刷题

🍉学习方向:C/C++方向

⭐️人生格言:为天地立心,为生民立命,为往圣继绝学,为万世开太平


 


前言:牛客网和LeetCode的刷题都不可或缺,我们都要做一做,无论是参加竞赛还是笔试面试,至少能提升你的代码能力!洛谷的题目也可以去做一做。力扣的题目对提升代码能力很有帮助,需要有一点基础,几乎都是接口型的题目,关于接口型和IO型的区别我们在本专栏的第一篇【LeetCode】力扣题——轮转数组、消失的数字、数组串联中就介绍过了,这里不再赘述,我们进入今天的力扣题目介绍——


目录

正文 

一、有效的括号

1、思路

2、解题过程

3、改进方案 

4、其他思路——有局限性的一种思路

结尾


正文 

一、有效的括号

链接:20. 有效的括号

博主题解链接:借助数据结构——栈——解决经典例题【有效的括号】

推荐大家可以直接去看博主在力扣上面写的题解,博主介绍的还是比较详细的,博主写题解,尤其是数据结构算法题的题解,都是画图加说明,简单易懂。

题目描述: 

除了示例,本题也给了这样一个提示—— 

1、思路

我们的思路是:

借助数据结构——栈,遍历字符串,左括号入栈,是右括号就取栈顶元素比较,看是否匹配。

我们先来看看题目描述——

分析一下题目的意思—— 

2、解题过程

像这种题目拿到手我们首先就是想到要画图,一定要有这个意识,数据结构的算法题一定要画图。

注意是取栈顶,可不是出栈顶哦!

接下来我们就可以写代码了——  

代码演示: 

//定义栈的结构
typedef char STDataType;
typedef struct Stack
{STDataType* arr;int top;//定义栈中有效的数据个数int capacity;//栈的空间大小
}ST;//初始化
void STInit(ST* ps)
{ps->arr = NULL;ps->top = ps->capacity = 0;
}//销毁
void STDestory(ST* ps)
{if (ps->arr)free(ps->arr);ps->arr = NULL;ps->top = ps->capacity = 0;
}//入栈——栈顶
void STPush(ST* ps, STDataType x)
{assert(ps);//判断空间是否足够if (ps->top == ps->capacity){//增容int newCapacity = ps->capacity == 0 ? 4 : 2 * ps->capacity;STDataType* tmp = (STDataType*)realloc(ps->arr, newCapacity * sizeof(STDataType));if (tmp == NULL){perror("realloc fail!");exit(1);}ps->arr = tmp;ps->capacity = newCapacity;}//空间足够ps->arr[ps->top++] = x;
}//栈是否为空
bool STEmpty(ST* ps)
{assert(ps);return ps->top == 0;
}//出栈——栈顶
void STPop(ST* ps)
{assert(!STEmpty(ps));ps->top--;
}//取栈顶元素
STDataType STTop(ST* ps)
{assert(!STEmpty(ps));return ps->arr[ps->top - 1];
}//获取栈中有效元素个数
int STSize(ST* ps)
{assert(ps);return ps->top;
}
//-----------------------以上是栈结构定义和常见方法-------------------------
bool isValid(char* s) 
{//借助数据结构——栈ST st;STInit(&st);char* pi = s;while(*pi != '\0'){//左括号入栈if(*pi == '(' || *pi == '[' || *pi == '{'){STPush(&st,*pi);}else{//右括号——取栈顶,比较,匹配则出栈,不匹配直接返回false//栈不为空才能取栈项if(STEmpty(&st)){STDestory(&st);return false;}char top = STTop(&st);if((top == '(' && *pi != ')')||(top == '[' && *pi != ']')||(top == '{' && *pi != '}')){STDestory(&st);return false;}//本次是匹配的——出栈STPop(&st);}pi++;}//判断栈是否为空,为空有效,非空无效if(STEmpty(&st)){STDestory(&st);return true;}STDestory(&st);return false;STDestory(&st);return ret;
}

复杂度:时间复杂度:O(N),空间复杂度:O(1)

3、改进方案 

最后我们【判断栈是否为空,为空有效,非空无效】那里代码太长了,我们用一个三目表达式就可以把它替换下来,这就是改进方案。

代码演示:

//定义栈的结构
typedef char STDataType;
typedef struct Stack
{STDataType* arr;int top;//定义栈中有效的数据个数int capacity;//栈的空间大小
}ST;//初始化
void STInit(ST* ps)
{ps->arr = NULL;ps->top = ps->capacity = 0;
}//销毁
void STDestory(ST* ps)
{if (ps->arr)free(ps->arr);ps->arr = NULL;ps->top = ps->capacity = 0;
}//入栈——栈顶
void STPush(ST* ps, STDataType x)
{assert(ps);//判断空间是否足够if (ps->top == ps->capacity){//增容int newCapacity = ps->capacity == 0 ? 4 : 2 * ps->capacity;STDataType* tmp = (STDataType*)realloc(ps->arr, newCapacity * sizeof(STDataType));if (tmp == NULL){perror("realloc fail!");exit(1);}ps->arr = tmp;ps->capacity = newCapacity;}//空间足够ps->arr[ps->top++] = x;
}//栈是否为空
bool STEmpty(ST* ps)
{assert(ps);return ps->top == 0;
}//出栈——栈顶
void STPop(ST* ps)
{assert(!STEmpty(ps));ps->top--;
}//取栈顶元素
STDataType STTop(ST* ps)
{assert(!STEmpty(ps));return ps->arr[ps->top - 1];
}//获取栈中有效元素个数
int STSize(ST* ps)
{assert(ps);return ps->top;
}
//-----------------------以上是栈结构定义和常见方法-------------------------
bool isValid(char* s) 
{//借助数据结构——栈ST st;STInit(&st);char* pi = s;while(*pi != '\0'){//左括号入栈if(*pi == '(' || *pi == '[' || *pi == '{'){STPush(&st,*pi);}else{//右括号——取栈顶,比较,匹配则出栈,不匹配直接返回false//栈不为空才能取栈项if(STEmpty(&st)){STDestory(&st);return false;}char top = STTop(&st);if((top == '(' && *pi != ')')||(top == '[' && *pi != ']')||(top == '{' && *pi != '}')){STDestory(&st);return false;}//本次是匹配的——出栈STPop(&st);}pi++;}//判断栈是否为空,为空有效,非空无效// if(STEmpty(&st))// {//     STDestory(&st);//     return true;// }// STDestory(&st);// return false;//写成三目表达式bool ret = STEmpty(&st) ? true : false;STDestory(&st);return ret;
}

复杂度:时间复杂度:O(N),空间复杂度:O(1)

代码只有一个循环遍历,其它的都是条件判断,时间复杂度O(N),也没有额外申请空间,故空间复杂度O(1),复杂度较优。

4、其他思路——有局限性的一种思路


结尾

往期回顾:

【LeetCode&数据结构】单链表的应用——随机链表的复制问题、相交链表问题详解

【牛客&LeetCode&数据结构】单链表的应用——移除链表元素问题、链表分割问题详解

【牛客&LeetCode&数据结构】单链表的应用——合并两个有序链表问题、链表的回文结构问题详解

【LeetCode&数据结构】单链表的应用——反转链表问题、链表的中间节点问题详解

【LeetCode】力扣题——轮转数组、消失的数字、数组串联

【LeetCode】力扣题——轮转数组、消失的数字、数组串联

结语:本篇文章到这里就结束了,本文讲述的两道代码题并不适合C语言初学者,需要有一定的C语言基础,最好要学过数据结构与算法的算法复杂度和链表的知识,才能写出复杂度较优的代码来。大家一定要自己动手敲一敲,不敲的话不仅容易忘记,也不方便将来复习。

http://www.xdnf.cn/news/16064.html

相关文章:

  • iOS 加固工具有哪些?快速发布团队的实战方案
  • Django Ninja
  • 【web 自动化】-6- 数据驱动DDT
  • AWS Certified Cloud Practitioner 认证考试 测试题与解析
  • CSS实现背景色下移10px
  • 自动化与安全 - 将 Terraform 集成到 CI/CD
  • rancher上使用rke在华为云多网卡的服务器上安装k8s集群问题处理了
  • 使用Trae简单编写一个登陆页面
  • 智能合约安全 - 重入攻击 - 常见漏洞(第一篇)
  • AUTOSAR进阶图解==>AUTOSAR_SWS_COMManager
  • 【JS逆向基础】数据库之MongoDB
  • c#转python第四天:生态系统与常用库
  • 近期工作感想:职业规划篇
  • Web开发 04
  • 【企业架构】TOGAF概念之一
  • Android系统5层架构
  • XSS知识总结
  • kafka生产端和消费端的僵尸实例以及解决办法
  • `MYSQL`、`MYSQL_RES` 和 `MYSQL_FIELD`的含义与使用案例
  • 【硬件】GalaxyTabPro10.1(SM-T520)刷机/TWRP/LineageOS14/安卓7升级全过程
  • 浅谈 Vue 的双向数据绑定
  • Java 字符集(Charset)详解:从编码基础到实战应用,彻底掌握字符处理核心机制
  • 【数据结构】双向循环链表的实现
  • 基于机器视觉的迈克耳孙干涉环自动计数系统设计与实现
  • Node.js:函数、路由、全局对象
  • Docker Compose 配置
  • 如何5分钟快速搭建智能问答系统
  • 详解如何解决Mysql主从复制延迟
  • LINUX720 SWAP扩容;新增逻辑卷;逻辑卷扩容;数据库迁移;gdisk
  • Ajax简单介绍及Axios请求方式的别名