当前位置: 首页 > backend >正文

【人工智能agent】--dify通过mcp协议调用工具

MCP Client

发起工具调用的实体,也就是 Dify 工作流或 Agent。它通过 Dify 平台提供的标准化接口(工具节点)来请求服务。

MCP Server / Host

提供实际服务的端点。在这个例子中,就是模拟 API 服务器 上的各个API (/api/pump/status, /api/cmms/pump/history 等)。这个服务器理解工具调用背后转换成的 HTTP 请求并返回数据。

Dify 平台

扮演着协议转换器、编排器和代理的角色。它接收来自 Client (工作流节点) 的标准化工具调用请求,根据工具的 Schema 定义,将其转换为具体的 HTTP 请求发送给 Server/Host (你的 API),接收响应,再将其作为工具节点的输出返回给工作流。


目录

1.MCP-Server通信服务

2.Dify调用MCP协议

3.案例

3.1.高德地图MCP服务

3.2.Zapier MCP服务 

3.3.如何自定义MCP工具


1.MCP-Server通信服务

以下是MCP(Microcontroller Protocol)中SSE(Server-Sent Events)与STDIO(Standard Input/Output)通信模式的对比

特性STDIO(标准输入/输出)SSE(服务器推送事件)
通信方向双向(客户端↔服务器)单向(服务器→客户端)
传输方式本地进程间通信(通过 stdin/stdout/stderr基于 HTTP 长连接(text/event-stream
延迟极低(无网络开销)依赖网络延迟(需 TCP/IP 握手)
多客户端支持仅单会话(1客户端:1服务器)支持多客户端(1服务器:N客户端)
部署复杂度无需网络配置(本地进程直接调用)需 HTTP 服务端(如 Nginx、云服务)
安全性高(仅限本地进程)需 HTTPS/TLS 加密防中间人攻击
适用场景
  • 客户端和服务器在同一台机器上运行的场景
  • 需要本地访问文件系统或设备的工具
  • 客户端和服务器位于不同物理位置
  • 需要支持多客户端连接
  • 需要远程访问的服务
扩展性差(依赖本地资源)强(支持负载均衡和横向扩展)

2.Dify调用MCP协议

mcp协议github官网:python-sdk/examples/clients/simple-chatbot/.python-version at main · modelcontextprotocol/python-sdk · GitHub

dify官网文档解析:dify-plugin-tools-mcp_sse/tools/mcp_list_tools.py at main · junjiem/dify-plugin-tools-mcp_sse · GitHub

直接在市场搜索安装插件:

MCP SSE提供两个功能:

  1.  mcp_sse_list_tools:获取工具列表
  2. mcp_sse_list_tools:调用工具

sse连接工具格式:

{"server_name1": {"url": "http://127.0.0.1:8000/sse","headers": {},"timeout": 60,"sse_read_timeout": 300},"server_name2": {"url": "http://127.0.0.1:8001/sse"}
}

3.案例

3.1.高德地图MCP服务

进入高德地图开发者后台:注册应用,完成实名认证,获取MCP服务器密钥,用于地图和天气数据调用。

我的应用 | 高德控制台 

使用教程:快速接入-MCP Server | 高德地图API

 dify使用高德地图mcp-server:

{"server_name1":{    "url": "https://mcp.amap.com/sse?key=****","headers": {},"timeout": 60,"sse_read_timeout": 300  }}

3.2.Zapier MCP服务 

Zapier MCP 是 Zapier 用于支持其自动化工作流(Zaps)的底层微服务通信平台,旨在高效连接不同应用(如 Slack、Google Sheets 等)的 API,实现跨系统的数据流转与自动化触发。其核心目标是降低集成复杂度,提升可扩展性。

 可以获取集成7000+应用的MCP Server URL,支持邮件、搜索、CRM等多种操作,极大丰富助手功能。

官网:Get Started - Zapier AI Actions

完成注册之后:

2.复制链接地址后面使用

3.添加mcp工具

 

我这里添加注册了一个搜索引擎:Tavily

{"server_name1":{    "url": "https://mcp.amap.com/sse?key=***","headers": {},"timeout": 60,"sse_read_timeout": 300  },"server_name2":{    "url": "刚才的链接"}}

添加到mcp服务配置中:

创建智能体:

 

你是一个智能助手,可根据用户输入的指令,进行推理并调用工具,完成任务后返回给用户结果。其中

server_name1为地图和天气服务,其中server_name2为搜索服务。

3.3.如何自定义MCP工具

现在如果自己写了一个爬虫工具,需要调用到dify工作流或者智能体中如何实现呢

1.搭建MCP-server,选择sse通信协议,举例子:

from fastmcp import FastMCPmcp = FastMCP("Demo 🚀",port=9000)@mcp.tool()
def add(a: int, b: int) -> int:"""Add two numbers"""return a + bif __name__ == "__main__":mcp.run(transport='sse')

直接运行:

 成功搭建。

2.dify调用 

{"mcp_server": {"url": "http://本机ip:9000/sse","headers": {},"timeout": 5,"sse_read_timeout": 300}
}

完整示例:

import anyio
import click
import httpx
import mcp.types as types
from mcp.server.lowlevel import Serverimport pandas as pd
import time# async def fetch_website(
#     url: str,
# ) -> list[types.TextContent | types.ImageContent | types.EmbeddedResource]:
#     headers = {
#         "User-Agent": "MCP Test Server (github.com/modelcontextprotocol/python-sdk)"
#     }
#     async with httpx.AsyncClient(follow_redirects=True, headers=headers) as client:
#         response = await client.get(url)
#         response.raise_for_status()
#         return [types.TextContent(type="text", text=response.text)]async def fetch_website(data_type: str,Start_Time: str,End_Time: str,
)-> list[types.TextContent | types.ImageContent | types.EmbeddedResource]:from selenium import webdriverfrom selenium.webdriver.common.by import Byfrom selenium.webdriver.edge.service import Servicefrom selenium.webdriver.edge.options import Optionsfrom selenium.webdriver.support.ui import WebDriverWaitfrom selenium.webdriver.support import expected_conditions as ECfrom selenium.webdriver.common.action_chains import ActionChains# 设置Edge浏览器选项# try:# except Exception as e:#     print("Edge浏览器启动失败,请检查驱动是否正确安装!")#     print(e)all_data_dist = {"综合": "GANGCAIZONGHE","长材": "CHANGCAI","扁平": "BIANPING","一次材": "YICICAI","华东": "HUADONG","华南": "HUANAN","华北": "HUABEI","中南": "ZHONGNAN","东北": "DONGBEI","西南": "XINAN","西北": "XIBEI","螺纹": "LUOWEN","线材": "XIANCAI","型材": "XINCAI","中厚": "ZHONGHOU","锅炉容器板": "GUOLURONGQIBAN","造船板": "ZAOCHUANBAN","热卷": "REJUAN","窄带": "ZAIDAI","冷板": "LENGBAN","镀锌板卷": "DUXIN","无缝管": "WUFENGGUAN","聊城无缝钢管": "WUFENG_LIAOCHENG","焊管": "HANGUAN","盘扣式钢管脚手架": "PKSJSJ"}print("开始爬取数据")print("普钢的所有数据类型:" + str(all_data_dist.keys()))# Start_Time = input("请输入开始日期(格式:2024-01-01):") or "2024-04-01"Start_Time_year = Start_Time.split("-")[0]Start_Time_month = Start_Time.split("-")[1]Start_Time_day = Start_Time.split("-")[2]# day格式转换02需要去掉前导0Start_Time_day = str(int(Start_Time_day))print(f"开始日期:{Start_Time_year}-{Start_Time_month}-{Start_Time_day}")# End_Time = input("请输入结束日期(格式:2025-04-01):") or "2025-04-01"End_Time_year = End_Time.split("-")[0]End_Time_month = End_Time.split("-")[1]End_Time_day = End_Time.split("-")[2]# day格式转换02需要去掉前导0End_Time_day = str(int(End_Time_day))print(f"结束日期:{End_Time_year}-{End_Time_month}-{End_Time_day}")# data_type = input(#     "请输入需要爬取的数据类型:普钢['综合', '长材', '扁平', '一次材', '华东', '华南', '华北', '中南', '东北', '西南', '西北', '螺纹', '线材', '型材', '中厚', '锅炉容器板', '造船板', '热卷', '窄带', '冷板', '镀锌板卷', '无缝管', '聊城无缝钢管', '焊管', '盘扣式钢管脚手架']")data_type1 = all_data_dist[data_type]# 等待页面加载3s# time.sleep(3)# # element = driver.find_element(By.CLASS_NAME, "mRightBox")# # 等待页面加载3s-# time.sleep(3)edge_options = Options()edge_options.add_argument("--headless")  # 无头模式,不显示浏览器窗口edge_options.add_argument("--disable-gpu")edge_options.add_argument("--window-size=1920,1080")edge_service = Service('D:\桌面文件\edgedriver_win64\msedgedriver.exe')  # 替换为你的Edge驱动路径driver = webdriver.Edge(service=edge_service, options=edge_options)print("开始打开浏览器")url = "https://index.mysteel.com/xpic/detail.html?tabName=pugang"driver.get(url)time.sleep(3)driver.find_element(By.CSS_SELECTOR, "img.addBtn[src*='icon.png']").click()  # 点击展开print("点击展开")time.sleep(3)# print(element.text)try:# 点击类型key1 = driver.find_element(By.ID, data_type1)key1.click()# 等待页面加载3stime.sleep(3)# //*[@id="searchTimeLiDiv"]/ul/li[1]/a按日查询key2 = driver.find_element(By.XPATH, '//*[@id="searchTimeLiDiv"]/ul/li[1]/a')key2.click()time.sleep(1)# 起始日期//*[@id="startDay"]start_date = driver.find_element(By.XPATH, '//*[@id="startDay"]')# start_date.clear()start_date.click()time.sleep(1)driver.maximize_window()# # 解析年月日# target_date = "2021-09-01"# year, month, day = target_date.split('-')# # 等待日历面板加载# WebDriverWait(driver, 10).until(#     EC.presence_of_element_located((By.CSS_SELECTOR,  ".daterangepicker.dropdown-menu"))# )from selenium.webdriver.common.by import Byfrom selenium.webdriver.support.ui import Select# 选择年份(如果页面有年份下拉框)year_dropdown = driver.find_element(By.XPATH, "/html/body/div[3]/div[2]/div/table/thead/tr[1]/th[2]/select[2]")year_dropdown.click()time.sleep(1)print("选择年份下拉框")# 选择年份<option value="1975">1975</option># year_dropdown.find_element(By.XPATH,  f"//option[@value='{year}']").click()# print(f"选择年份:{year}")select = Select(year_dropdown)select.select_by_visible_text(Start_Time_year)  # 根据文本选择print(f"选择年份:{Start_Time_year}")# 输出# 选择月份  /html/body/div[3]/div[2]/div/table/thead/tr[1]/th[2]/select[1]month_dropdown = driver.find_element(By.XPATH, "/html/body/div[3]/div[2]/div/table/thead/tr[1]/th[2]/select[1]")month_dropdown.click()time.sleep(1)print("选择月份下拉框")select1 = Select(month_dropdown)select1.select_by_visible_text(Start_Time_month)  # 根据文本选择print(f"选择月份:{Start_Time_month}")# 选择日期date_cell = driver.find_element(By.XPATH, f"//td[contains(@class, 'available') and text()='{Start_Time_day}']")date_cell.click()time.sleep(1)print(f"选择日期:{Start_Time_day}")except Exception as e:print(f"执行出错: {str(e)}")driver.save_screenshot('error.png')try:# //*[@id="searchTimeLiDiv"]/ul/li[1]/a按日查询key2 = driver.find_element(By.XPATH, '//*[@id="searchTimeLiDiv"]/ul/li[1]/a')key2.click()time.sleep(1)# 终止日期//*[@id="endDay"]end_date = driver.find_element(By.XPATH, '//*[@id="endDay"]')# start_date.clear()end_date.click()time.sleep(1)driver.maximize_window()# 解析年月日target_date = "2021-09-01"year, month, day = target_date.split('-')# # 等待日历面板加载# WebDriverWait(driver, 10).until(#     EC.presence_of_element_located((By.CSS_SELECTOR,  ".daterangepicker.dropdown-menu"))# )from selenium.webdriver.common.by import Byfrom selenium.webdriver.support.ui import Select# 选择年份(如果页面有年份下拉框)year_end_dropdown = driver.find_element(By.XPATH,"/html/body/div[4]/div[2]/div/table/thead/tr[1]/th[2]/select[2]")year_end_dropdown.click()print("选择年份下拉框")# 选择年份<option value="1975">1975</option># year_dropdown.find_element(By.XPATH,  f"//option[@value='{year}']").click()# print(f"选择年份:{year}")select_year_end = Select(year_end_dropdown)select_year_end.select_by_visible_text(End_Time_year)  # 根据文本选择print(f"选择年份:{End_Time_year}")# 输出# 选择月份  /html/body/div[4]/div[2]/div/table/thead/tr[1]/th[2]/select[1]month_end_dropdown = driver.find_element(By.XPATH,"/html/body/div[4]/div[2]/div/table/thead/tr[1]/th[2]/select[1]")month_end_dropdown.click()print("选择月份下拉框")select_month_end = Select(month_end_dropdown)select1_month_end = select_month_end.select_by_visible_text(End_Time_month)  # 根据文本选择print(f"选择月份:{End_Time_month}")# /html/body/div[4]/div[2]# 找到右侧日历left_calendar = driver.find_element(By.XPATH,'/html/body/div[4]/div[2]')# 选择日期# left_calendar = driver.find_element(By.CLASS_SELECTOR, "calendar single left")# driver.find_element(By.XPATH, "//td[contains(@class, 'available') and text()='2']")date_end_cell = left_calendar.find_element(By.XPATH,f'.//td[text()={End_Time_day}]')date_end_cell.click()driver.save_screenshot('C:\pythonProject\python爬虫\我的钢铁网\end_date.png')print(f"选择日期:{End_Time_day}")except Exception as e:print(f"执行出错: {str(e)}")driver.save_screenshot('error.png')# 点击搜索按钮search_btn = driver.find_element(By.XPATH, '//*[@id="dome1"]/table/tbody/tr/td[5]/img')search_btn.click()# driver.save_screenshot('C:\pythonProject\python爬虫\我的钢铁网\搜索之后.png')element = driver.find_element(By.CLASS_NAME, "mRightBox")# 等待页面加载3s-time.sleep(3)#保存截图driver.save_screenshot('C:\pythonProject\python爬虫\我的钢铁网\搜索之后.png')print(element.text)# data_str = element.text# driver.quit()return [types.TextContent(type="text", text=element.text)]# return data_str@click.command()
@click.option("--port", default=8000, help="Port to listen on for SSE")
@click.option("--transport",type=click.Choice(["stdio", "sse"]),default="stdio",help="Transport type",
)
def main(port: int, transport: str) -> int:app = Server("mcp-website-fetcher")@app.call_tool()async def fetch_tool(name: str, arguments: dict) -> list[types.TextContent | types.ImageContent | types.EmbeddedResource]:if name != "fetch":raise ValueError(f"Unknown tool: {name}")# if "url" not in arguments:#     raise ValueError("Missing required argument 'url'")return await fetch_website(arguments["data_type"],arguments["Start_Time"],arguments["End_Time"])@app.list_tools()async def list_tools() -> list[types.Tool]:return [types.Tool(name="fetch",description="抓取网页数据,需要输入抓取钢材的类型,开始时间,结束时间三个参数",inputSchema={"type": "object","required": ["data_type", "Start_Time", "End_Time"],"properties":{"data_type": {"type": "string", "description": "钢材种类(如HRB400)"},"Start_Time": {"type": "string", "format": "date", "description": "开始时间(YYYY-MM-DD)"},"End_Time": {"type": "string", "format": "date", "description": "结束时间(YYYY-MM-DD)"},},},)]if transport == "sse":from mcp.server.sse import SseServerTransportfrom starlette.applications import Starlettefrom starlette.responses import Responsefrom starlette.routing import Mount, Routesse = SseServerTransport("/messages/")async def handle_sse(request):async with sse.connect_sse(request.scope, request.receive, request._send) as streams:await app.run(streams[0], streams[1], app.create_initialization_options())return Response()starlette_app = Starlette(debug=True,routes=[Route("/sse", endpoint=handle_sse, methods=["GET"]),Mount("/messages/", app=sse.handle_post_message),],)import uvicornuvicorn.run(starlette_app, host="0.0.0.0", port=port)else:from mcp.server.stdio import stdio_serverasync def arun():async with stdio_server() as streams:await app.run(streams[0], streams[1], app.create_initialization_options())anyio.run(arun)return 0

运行: 

uv run mcp_simple_tool --transport sse --port 8000

{"Web crawling": {"url": "http://10.***:8000/sse","headers": {},"timeout": 5,"sse_read_timeout": 300}
}

 

http://www.xdnf.cn/news/4634.html

相关文章:

  • HR新战场:构建AI战略时代的认知分工与生态化人才供应链
  • 嵌入式C进阶路线指南
  • 创建虚拟服务时实现持久连接。
  • [人机交互]交互设计过程
  • 堆排序(算法题)
  • Easy云盘总结篇-文件分享
  • 如何看待首个通用型智能体 (The First General AI Agent) Manus发布?
  • ORB-SLAM3论文阅读
  • Agent学习之:MCP和Function Call
  • # 创建一个功能完备的计算器应用:使用PyQt5和Python
  • 软考高级-系统设计架构师高频考点速记
  • 101个alpah学习,第3个alpha
  • C++初阶-string类4
  • Advanced Installer 22.5打包windows 安装包
  • 前端线上错误日志收集与定位指南
  • 食品行业EDI:General Mills EDI需求分析
  • 006 yum和Linux生态
  • 澳鹏干货 | 动态判断:如何用“群体智慧“优化AI数据标注流程?
  • vue中<router-view />中的组件调用父组件的方法
  • 数据库补充知识
  • 人脸识别技术应用管理办法的影响
  • 网络编程之端口号
  • 主数据管理与数据治理有什么关系?
  • 大模型 Agent 技术:开启智能交互新时代
  • Mermaid的常见用法
  • Oracle 数据布局探秘:段与区块的内部机制
  • 制作一款打飞机游戏40:点选敌人
  • 编写程序,统计两会政府工作报告热词频率,并生成词云
  • 【icpc陕西省赛】树的最大深度+基环树找环的大小
  • 注意力(Attention)机制详解(附代码)