当前位置: 首页 > backend >正文

LeetCode 热题 100 279. 完全平方数

LeetCode 热题 100 | 279. 完全平方数

大家好,今天我们来解决一道经典的动态规划问题——完全平方数。这道题在 LeetCode 上被标记为中等难度,要求找到和为给定整数 n 的完全平方数的最少数量。


问题描述

给定一个整数 n,返回和为 n 的完全平方数的最少数量。

示例 1:

输入:n = 12
输出:3
解释:12 = 4 + 4 + 4

示例 2:

输入:n = 13
输出:2
解释:13 = 4 + 9

提示:

  • 1 <= n <= 10^4

解题思路

核心思想
  1. 动态规划

    • 使用动态规划(DP)来解决这个问题。
    • 定义 dp[i] 为和为 i 的完全平方数的最少数量。
    • 状态转移方程为:
      [
      dp[i] = \min_{j^2 \leq i} (dp[i - j^2] + 1)
      ]
      其中,j^2 是小于等于 i 的完全平方数。
  2. 初始化

    • dp[0] = 0,因为和为 0 的完全平方数的最少数量是 0。
    • dp[1] = 1,因为和为 1 的完全平方数的最少数量是 1。
  3. 遍历

    • 从 2 到 n 遍历,对于每个 i,找到所有小于等于 i 的完全平方数 j^2,并更新 dp[i]

状态转移方程的推导

1. 定义状态

dp[i] 表示和为 i 的完全平方数的最少数量。

2. 状态转移

假设我们已经知道了所有小于 idp 值,现在需要计算 dp[i]。为了得到和为 i 的完全平方数的最少数量,我们可以尝试以下方法:

  • 选择一个完全平方数:选择一个完全平方数 j^2,使得 j^2 <= i
  • 计算剩余部分:如果选择了 j^2,那么剩下的部分就是 i - j^2
  • 递归关系:因此,dp[i] 可以表示为 dp[i - j^2] + 1,其中 +1 表示我们选择了一个完全平方数 j^2
3. 选择最优解

由于 j^2 有多种可能(例如 1, 4, 9, 16 等),我们需要在所有可能的 j^2 中选择一个使得 dp[i - j^2] + 1 最小的值。因此,状态转移方程为:

[
dp[i] = \min_{j^2 \leq i} (dp[i - j^2] + 1)
]

详细解释

假设我们正在计算 dp[12],即和为 12 的完全平方数的最少数量。我们可以尝试以下完全平方数:

  • 选择 j^2 = 1

    • 剩下的部分是 12 - 1 = 11
    • 因此,dp[12] = dp[11] + 1
  • 选择 j^2 = 4

    • 剩下的部分是 12 - 4 = 8
    • 因此,dp[12] = dp[8] + 1
  • 选择 j^2 = 9

    • 剩下的部分是 12 - 9 = 3
    • 因此,dp[12] = dp[3] + 1
  • 选择 j^2 = 16

    • 16 > 12,所以不能选择。

我们需要在这些选择中找到最小值:

[
dp[12] = \min(dp[11] + 1, dp[8] + 1, dp[3] + 1)
]

Python代码实现

class Solution(object):def numSquares(self, n):""":type n: int:rtype: int"""dp = [0] * (n + 1)dp[0] = 0dp[1] = 1for i in range(2, n + 1):temp = []j = 1while j * j <= i:temp.append(dp[i - j * j])j += 1dp[i] = min(temp) + 1return dp[n]

代码解析

  1. 初始化

    • dp 数组初始化为长度为 n + 1 的列表,所有值初始化为 0。
    • dp[0] = 0,因为和为 0 的完全平方数的最少数量是 0。
    • dp[1] = 1,因为和为 1 的完全平方数的最少数量是 1。
  2. 状态转移

    • 遍历从 2 到 n 的每个整数 i
    • 对于每个 i,找到所有小于等于 i 的完全平方数 j^2
    • dp[i - j^2] 的值存储到临时列表 temp 中。
    • 更新 dp[i]min(temp) + 1,表示选择一个完全平方数 j^2 后的最小值。
  3. 返回结果

    • 最终结果存储在 dp[n] 中。

复杂度分析

  • 时间复杂度:O(n * sqrt(n)),其中 n 是给定的整数。对于每个 i,需要遍历所有小于等于 i 的完全平方数。
  • 空间复杂度:O(n),使用了长度为 n + 1dp 数组。

示例运行

示例 1
输入:n = 12
输出:3
解释:12 = 4 + 4 + 4
示例 2
输入:n = 13
输出:2
解释:13 = 4 + 9

总结

通过动态规划的方法,我们可以高效地解决完全平方数问题。状态转移方程 dp[i] = \min_{j^2 \leq i} (dp[i - j^2] + 1) 确保了我们能够找到和为 i 的完全平方数的最少数量。希望这篇题解对大家有所帮助,如果有任何问题,欢迎在评论区留言讨论!

关注我,获取更多算法题解和编程技巧!

http://www.xdnf.cn/news/4181.html

相关文章:

  • Qt开发经验 --- 避坑指南(4)
  • Linux/AndroidOS中进程间的通信线程间的同步 - POSIX IPC
  • SVG数据可视化设计(AI)完全工作流解读|计育韬
  • VSCode|IDEA|PyCharm无缝接入DeepSeek R1实现AI编程
  • hybird接口配置
  • 【基础】Python包管理工具uv使用教程
  • 从零实现基于Transformer的英译汉任务
  • 翻转二叉树(简单)
  • uniapp开发09-设置一个tabbar底部导航栏且配置icon图标
  • Ubuntu 安装 containerd
  • 【东枫科技】代理英伟达产品:交换机系统
  • 如何修改 JAR 包中的源码
  • 地级市-机器人、人工智能等未来产业水平(2009-2023年)-社科数据
  • mapbox基础,加载Fog云雾效果
  • 【C语言干货】野指针
  • 系统级编程(二):通过读取PE文件获取EXE或者DLL的依赖
  • Spring Cloud Stream集成RocketMQ(kafka/rabbitMQ通用)
  • 2025年OpenAI重大架构调整:资本与使命的再平衡
  • 在Star-CCM+中实现UDF并引用场数据和网格数据
  • 配置Jupyter Notebook环境及Token认证(Linux服务器)
  • Elasticsearch知识汇总之ElasticSearch监控方案
  • 关于 js:1. 基础语法与核心概念
  • Java实现堆排序算法
  • 代理式AI(Agentic AI):2025年企业AI转型的催化剂
  • 2、实验室测控系统 - /自动化与控制组件/lab-monitoring-system
  • 一文速览可证数学定理的DeepSeek-Prover系列模型:从Prover V1、Prover V1.5到DeepSeek-Prover V2
  • AI教你学VUE——Gemini版
  • 【Python】常用命令提示符
  • 【心海资源】0U攻击工具|一键模仿地址生成+余额归集+靓号生成系统
  • Waymo公司正在加快其位于亚利桑那州新工厂的无人驾驶出租车(robotaxi)生产进度