当前位置: 首页 > backend >正文

actuary notes[2]

文章目录

  • event
  • references

event

  1. let A={x∣x被2整除,x∈N+}A=\{x| x被2整除,x \in \mathbb{N^+}\}A={xx2整除,xN+},A′={x∣x不能被2整除,x∈N+}A'=\{x| x不能被2整除,x \in \mathbb{N^+}\}A={xx不能被2整除,xN+},so A′A'A can be called as the inverse (opposite) event of AAA.
  2. at least one of the events AAA and A′A'A will certainly happen , so that is A∪A′A\cup A'AA.in the same way, the A1,A2,.....A_1,A_2,.....A1,A2,..... events have one or more than one will definitely appear,that is A1∪A2∪.....A_1\cup A_2\cup.....A1A2..... .
  3. if both of AAA and A′A'A occur ,then that situation can be called as A∩A′A\cap A'AA.in a similar way, the A1∩A2∩.....A_1\cap A_2\cap.....A1A2..... represents those event such as A1,A2,.....A_1,A_2,.....A1,A2,..... all happen.
    for example, there are a great deal of corn kernels on a table,you take out some cof them for cooking, let A1={x∣x≥10}A_1=\{x|x \ge10\}A1={xx10},A2={x∣x≤50}A_2=\{x|x \le 50\}A2={xx50},A3={x∣x是偶数}A_3=\{x|x 是偶数\}A3={xx是偶数},the A′=A1∩A2∩A3=A1A2A3A'=A_1\cap A_2\cap A_3=A_1A_2A_3A=A1A2A3=A1A2A3 reports the fact that the number of corn kernels you token from the table between 10 and 50 and will be divisible by 2.
  4. as similar as sets,two events such as AAA and A′A'A have substraction operation that A−A′A-A'AA,for example, let A1={x∣x≤30}A_1=\{x|x \le 30\}A1={xx30},A2={x∣x≤50}A_2=\{x|x \le 50\}A2={xx50},the A2−A1={x∣x≤50,x>30}A_2-A_1=\{x|x \le 50,x > 30\}A2A1={xx50,x>30}.
  5. if the two AAA and A′A'A events never happen concurrently, then they can be called as incompatible events,such as A={x∣x是偶数}A=\{x|x 是偶数\}A={xx是偶数} and A′={x∣x是奇数}A'=\{x|x 是奇数\}A={xx是奇数}.
  6. In probability theory, the operations on events (subsets of a sample space) follow specific algebraic rules similar to set theory. Here are the fundamental laws:

1. Commutative Laws

  • Union: A∪B=B∪AA \cup B = B \cup AAB=BA
  • Intersection:A∩B=B∩AA \cap B = B \cap AAB=BA

2. Associative Laws

  • Union: (A∪B)∪C=A∪(B∪C)(A \cup B) \cup C = A \cup (B \cup C)(AB)C=A(BC)
  • Intersection: (A∩B)∩C=A∩(B∩C)(A \cap B) \cap C = A \cap (B \cap C)(AB)C=A(BC)

3. Distributive Laws

  • Union over Intersection:
    A∪(B∩C)=(A∪B)∩(A∪C)A \cup (B \cap C) = (A \cup B) \cap (A \cup C) A(BC)=(AB)(AC)
  • Intersection over Union:
    A∩(B∪C)=(A∩B)∪(A∩C)A \cap (B \cup C) = (A \cap B) \cup (A \cap C) A(BC)=(AB)(AC)

4. De Morgan’s Laws (Duality Laws)

  • Complement of Union:
    (A∪B)c=Ac∩Bc(A \cup B)^c = A^c \cap B^c (AB)c=AcBc
  • Complement of Intersection:
    (A∩B)c=Ac∪Bc(A \cap B)^c = A^c \cup B^c (AB)c=AcBc

5. Idempotent Laws

  • Union: A∪A=AA \cup A = AAA=A
  • Intersection: A∩A=AA \cap A = AAA=A

6. Absorption Laws

  • Union Absorption: A∪(A∩B)=AA \cup (A \cap B) = AA(AB)=A
  • Intersection Absorption: A∩(A∪B)=AA \cap (A \cup B) = AA(AB)=A

7. Complement Laws

  • Double Negation: (Ac)c=A(A^c)^c = A(Ac)c=A
  • Universal & Empty Set:
    Sc=∅,∅c=SS^c = \emptyset, \quad \emptyset^c = S Sc=,c=S
  • Union with Universal Set: A∪S=SA \cup S = SAS=S
  • Intersection with Empty Set: A∩∅=∅A \cap \emptyset = \emptysetA=

8. Other Properties

  • Set Difference:
    A∖B=A∩BcA \setminus B = A \cap B^c AB=ABc
  • Symmetric Difference:
    AΔB=(A∖B)∪(B∖A)A \Delta B = (A \setminus B) \cup (B \setminus A) AΔB=(AB)(BA)

references

  1. 《数学》
http://www.xdnf.cn/news/17462.html

相关文章:

  • Spring Boot整合knife4j实战
  • BGP综合大实验
  • 152-基于CWT-CNN-BiGRU-Attention-SABO-LSSVM对滚动轴承的故障诊断
  • iceberg安装部署
  • java报错“ NoSuchMethodError:com.test.Service.doRoomList(Ljava/lang/String;)V解决方案
  • Text2SQL 自助式数据报表开发(Chat BI)
  • “骑行热”正当时,维乐Eden ANGEL坐垫守护舒适与健康
  • Kafka 生产者与消费者分区策略全解析:从原理到实践
  • 消息队列系统测试报告
  • 一周学会Matplotlib3 Python 数据可视化-绘制条形图(Bar)
  • 【Vue✨】Vue3 中英文切换功能实现
  • java生成用户登录token
  • 人工智能-python-机器学习-模型选择与调优实战指南:从交叉验证到朴素贝叶斯分类
  • MyBatis的xml中字符串类型判空与非字符串类型判空处理方式
  • Pytorch深度学习框架实战教程12:Pytorch混合精度推理,性能加速147%的技术实现
  • 深度解析Linux设备树(DTS):设计原理、实现框架与实例分析
  • 算术运算符指南
  • 如何用分析方法解决工作中的问题?
  • Day11 原理篇
  • 滚动条开始滚动时,左侧导航固定,当左侧内容触底到footer时左侧内容取消固定并跟随滚动条滚动
  • 【Python 小脚本·大用途 · 第 2 篇】
  • 女子试穿4条裤子留下血渍赔50元引争议:消费责任边界在哪?
  • 【星闪】Hi2821 | UART通用异步收发器 + 串口中断收发例程
  • 【人工智能99问】BERT的原理什么?(23/99)
  • 开启单片机
  • 编程基础之多维数组——矩阵交换行
  • 【YOLOv8改进 - C2f融合】C2f融合Outlook Attention:将细粒度特征编码到 token 中, 提高在图像分类和语义分割等任务中的性能
  • 【算法题】:斐波那契数列
  • 【Python】常用内置模块
  • 安全运维工具链全解析