LangGraph 深度应用指南:构建下一代Agent系统
LangGraph 深度应用指南:构建下一代Agent系统
LangGraph 是一个基于状态的工作流编排框架,专为构建复杂的多步骤AI应用而设计。以下是深度解析和实战应用示例:
一、LangGraph 核心架构深度解析
1. 状态驱动模型
LangGraph 的核心是状态对象,它在整个工作流中流动并被各个节点修改。状态通常定义为:
from typing import TypedDict, Annotated, List
from langchain_core.messages import BaseMessage
from langgraph.graph.message import add_messagesclass AgentState(TypedDict):messages: Annotated[List[BaseMessage], add_messages]user_query: strtool_results: listcurrent_step: str
2. 节点与边的高级用法
条件边实现动态路由:
def should_continue(state: AgentState) -> str:if "需要更多信息" in state["last_output"]:return "collect_more_info"return "generate_final_response"graph.add_conditional_edges("decision_node",should_continue,{"collect_more_info": "info_collection_node","generate_final_response": "response_generation_node"}
)
并行节点加速处理:
graph.add_node("research_topic", research_tool)
graph.add_node("check_facts", fact_check_tool)
graph.add_edge("start", "research_topic")
graph.add_edge("start", "check_facts") # 同时启动
graph.add_edge("research_topic", "aggregate_results")
graph.add_edge