当前位置: 首页 > backend >正文

MCP和Function Calling

MCP

MCP(Model Context Protocol,模型上下文协议) ,2024年11月底,由 Anthropic 推出的一种开放标准,旨在统一大模型与外部数据源和工具之间的通信协议。MCP 的主要目的在于解决当前 AI 模型因数据孤岛限制而无法充分发挥潜力的难题,MCP 使得 AI 应用能够安全地访问和操作本地及远程数据,为 AI 应用提供了连接万物的接口。

如下图示意,可以将 MCP 理解为一个 “AI 的 USB 接口”,提供了一个连接标准,使 Agent/LLM(如 Claude、ChatGPT、Qwen)能够方便、安全的访问各种外部工具和数据(比如 Gmai、Slack、本地文件等)。
在这里插入图片描述

MCP 就是制定了一套标准,充当 AI 模型的"万能转接头",让 LLM 可以使用不同工具。如下图示,这样你应该更容易理解“中间协议层”的概念。
在这里插入图片描述
MCP 提供给 LLM 所需的上下文:Resources 资源、Prompts 提示词、Tools 工具。

更具体的说 MCP 的优势在于:

  • 生态:MCP 提供很多现成的插件,你的 AI 可以直接使用。
  • 统一性:不限制于特定的 AI 模型,任何支持 MCP 的模型都可以灵活切换。
  • 数据安全:你的敏感数据留在自己的电脑上,不必全部上传(因为我们可以自行设计接口确定传输哪些数据)。

Function Calling

将模型连接到外部数据和系统,平铺式的罗列 Tools 工具。Function Call是大模型与真实世界交互的“桥梁”,从语言理解 => 具体行动

Function Calling在大模型中的作用:

  • 扩展模型能力
    大模型本身无法直接操作外部系统(如数据库、计算工具),但通过调用预设函数,可以完成:实时数据获取(天气、股价、新闻);复杂计算(数学运算、代码执行);操作外部系统(发送邮件、控制智能设备)
  • 结构化输出
    模型可将用户自然语言请求转化为结构化参数,传递给函数。例如:用户说“明天北京天气如何?” → 模型调用 get_weather(location=“北京”, date=“2025-05-06”)
  • 动态决策流程
    模型可根据上下文决定是否/何时调用函数,甚至链式调用多个函数(如先查天气,再推荐穿搭)。

MCP与Function Calling区别

在这里插入图片描述

已经有了MCP还需要Function Calling么?

简单、原子化任务使用Function Calling会更方便

  • 查询天气 get_weather(city=“北京”)
  • 计算数学公式 calculate(expression=“3+5”)
  • 发送单条通知 send_email(to=“user@example.com”)

Function Calling优势:
开发快捷:无需配置 MCP Server,直接通过模型 API 调用预定义函数。
低延迟:单次请求-响应,无需协议层开销。

MCP 可能成为主流,但 Function Calling 作为底层能力仍将存在

http://www.xdnf.cn/news/13081.html

相关文章:

  • OpenCV CUDA模块光流计算-----实现Farneback光流算法的类cv::cuda::FarnebackOpticalFlow
  • Spring Boot 与 Kafka 的深度集成实践(二)
  • Flink 系列之二十二 - 高级概念 - 保存点
  • Linux命令cat /proc/net/snmp查看网络协议层面统计信息
  • 项目管理进阶:解析112页IPD集成产品开发高层培训【附全文阅读】
  • 秋叶包ComfyUI 新手入门攻略及实战指南
  • 11_数据表示与特征工程
  • 华为OD机试-最短木板长度-二分法(A卷,100分)
  • .Net 优秀框架 ABP全面详解
  • 推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材)
  • 第三章:局域网
  • FDA方向图的matlab仿真实现
  • 河北对口计算机高考MySQL笔记(完结版)(2026高考)持续更新~~~~
  • 【Elasticsearch基础】Elasticsearch批量操作(Bulk API)深度解析与实践指南
  • RocketMQ 客户端负载均衡机制详解及最佳实践
  • FFmpeg介绍
  • AI-Python机器学习与深度学习实践技术应用
  • 苹果端Cursor免费额度与模型受限终极解决方案
  • 【Elasticsearch】一个图书馆的案例解释 Elasticsearch
  • Pandas 可视化集成:数据科学家的高效绘图指南
  • 协议转换利器,profinet转ethercat网关的两大派系,各有千秋
  • C#中清空DataGridView的方法
  • RKNN开发环境搭建2-RKNN Model Zoo 环境搭建
  • DAY 26 函数专题1:函数定义与参数
  • 【HarmonyOS 5】鸿蒙中Stage模型与FA模型详解
  • ASR(语音识别)语音/字幕标注 通过via(via_subtitle_annotator)
  • pytorch卷积层权重之 二维互相关运算(corr2d) (亲测,已解决)
  • 华为云CAE部署spring cloud服务
  • MCU ADC硬件设计注意事项
  • Elasticsearch的索引