$\int_{0}^{1} x \arcsin \sqrt{4x - 4x^2}dx$
求积分 ∫ 0 1 x arcsin 4 x − 4 x 2 d x \int_{0}^{1} x \arcsin \sqrt{4x - 4x^2} \, dx ∫01xarcsin4x−4x2dx
这个积分本身不难,但是有易错点,①非主值区间三角函数不可求反函数;②计算量大,不能善用技巧容易算错
-
整理形式
∫ 0 1 x arcsin 4 x − 4 x 2 d x = ∫ 0 1 x arcsin − ( 4 x 2 − 4 x ) d x = ∫ 0 1 x arcsin − 4 ( x 2 − x + ( − 1 2 ) 2 − ( − 1 2 ) 2 ) d x = ∫ 0 1 x arcsin 1 − ( 2 x − 1 ) 2 d x \begin{aligned} \int_{0}^{1} x \arcsin \sqrt{4x - 4x^2} \, dx&=\int_{0}^{1} x \arcsin \sqrt{-(4x^2-4x)} \, dx\\ &=\int_{0}^{1} x \arcsin \sqrt{-4\left(x^2-x+(-\frac{1}2)^2-(-\frac{1}2)^2\right)} \, dx\\ &=\int_{0}^{1} x \arcsin \sqrt{1-(2x-1)^2} \, dx \end{aligned} ∫01xarcsin4x−4x2dx=∫01xarcsin−(4x2−4x)dx=∫01xarcsin−4(x2−x+(−21)2−(−21)2)dx=∫01xarcsin1−(2x−1)2dx -
换元
令 2 x − 1 = cos ( t ) 2x-1=\cos(t) 2x−1=cos(t),则有 x = 1 + cos ( t ) 2 x=\frac{1+\cos(t)}{2} x=21+cos(t),且 cos ( t ) ∈ [ − 1 , 1 ] \cos(t)\in[-1,1] cos(t)∈[−1,1],故可反解 t = arccos ( 2 x − 1 ) t=\arccos(2x-1) t=arccos(2x−1)。
换元3换
-
被积函数换:
x arcsin 1 − ( 2 x − 1 ) 2 = ( 1 + cos ( t ) ) 2 ⋅ arcsin 1 − cos 2 ( t ) = ( 1 + cos ( t ) ) 2 ⋅ arcsin ( sin ( t ) ) \begin{aligned} x \arcsin \sqrt{1-(2x-1)^2}&=\frac{(1+\cos(t))}{2}\cdot\arcsin\sqrt{1-\cos^2(t)}\\& =\frac{(1+\cos(t))}{2}\cdot\arcsin(\sin(t)) \end{aligned} xarcsin1−(2x−1)2=2(1+cos(t))⋅arcsin1−cos2(t)=2(1+cos(t))⋅arcsin(sin(t)) -
上下限换:
t = { arccos ( 2 ⋅ 0 − 1 ) = arccos ( − 1 ) = π , x = 0 arccos ( 2 ⋅ 1 − 1 ) = arccos ( 1 ) = 0 , x = 1 t=\begin{cases} \arccos(2\cdot0-1)=\arccos(-1)=\pi,\quad x=0\\ \arccos(2\cdot1-1)=\arccos(1)=0, \quad x=1 \end{cases} t={arccos(2⋅0−1)=arccos(−1)=π,x=0arccos(2⋅1−1)=arccos(1)=0,x=1 -
积分变量换
d x = d ( 1 + cos ( t ) 2 ) = − sin ( t ) 2 d t dx=d\left(\frac{1+\cos(t)}{2}\right)=-\frac{\sin(t)}2 dt dx=d(21+cos(t))=−2sin(t)dt
-
-
积分拆解
∫ 0 1 x arcsin 1 − ( 2 x − 1 ) 2 d x = ∫ π 0 ( 1 + cos ( t ) ) 2 ⋅ arcsin ( sin ( t ) ) ⋅ ( − sin ( t ) 2 ) d t = − 1 4 ∫ π 0 sin ( t ) ⋅ [ 1 + cos ( t ) ] ⋅ arcsin ( sin ( t ) ) d t ⏟ 利用定积分性质交换上下限 = 1 4 ∫ 0 π sin ( t ) ⋅ [ 1 + cos ( t ) ] ⋅ arcsin ( sin ( t ) ) ⏟ t ∉ [ − π 2 , π 2 ] , 分区间讨论 d t = 1 4 ∫ 0 π 2 sin ( t ) ⋅ [ 1 + cos ( t ) ] ⋅ arcsin ( sin ( t ) ) d t + 1 4 ∫ π 2 π sin ( t ) ⋅ [ 1 + cos ( t ) ] ⋅ arcsin ( sin ( t ) ) ⏟ 在 [ π 2 , π ] , t = π − arcsin ( y ) d t = 1 4 ∫ 0 π 2 sin ( t ) ⋅ [ 1 + cos ( t ) ] ⋅ t d t + 1 4 ∫ π 2 π sin ( t ) ⋅ [ 1 + cos ( t ) ] ⋅ ( π − t ) d t ⏟ 令 π − t = u 进行换元,记得换元三换 = 1 4 ∫ 0 π 2 sin ( t ) ⋅ [ 1 + cos ( t ) ] ⋅ t d t + 1 4 ∫ π 2 0 sin ( π − u ) ( 1 + cos ( π − u ) ) u ⋅ ( − d u ) ⏟ 利用诱导公式化简 = 1 4 ∫ 0 π 2 sin ( t ) ⋅ [ 1 + cos ( t ) ] ⋅ t d t + 1 4 ∫ 0 π 2 sin ( u ) ( 1 − cos ( u ) ) u ⋅ d u = 1 4 [ ∫ 0 π 2 t ⋅ sin ( t ) [ 1 + cos ( t ) + 1 − cos ( t ) ] d t ] = 1 2 ∫ 0 π 2 t ⋅ sin ( t ) d t ⏟ 表格法快速求积 = 1 2 [ sin ( t ) − t ⋅ cos ( t ) ] ∣ 0 π 2 = 1 2 \begin{aligned} &\int_{0}^{1} x \arcsin \sqrt{1-(2x-1)^2} \, dx\\ &=\int_\pi^0\frac{(1+\cos(t))}{2}\cdot\arcsin(\sin(t))\cdot\left(-\frac{\sin(t)}2\right)dt\\ &=\underbrace{-\frac14\int_\pi^0\sin(t)\cdot\left[1+\cos(t)\right]\cdot\arcsin(\sin(t))dt}_{利用定积分性质交换上下限}\\ &=\frac14\int_0^\pi\sin(t)\cdot\left[1+\cos(t)\right]\cdot\underbrace{\arcsin(\sin(t))}_{t\notin\left[-\frac\pi2,\frac\pi2\right],\text{分区间讨论}}dt\\ &=\frac14\int_0^\frac\pi2\sin(t)\cdot\left[1+\cos(t)\right]\cdot\arcsin(\sin(t))dt+\frac14\int_\frac\pi2^\pi\sin(t)\cdot\left[1+\cos(t)\right]\cdot\underbrace{\arcsin(\sin(t))}_{\text{在}\left[\frac\pi2,\pi\right],t=\pi-\arcsin(y)}dt\\ &=\frac14\int_0^\frac\pi2\sin(t)\cdot\left[1+\cos(t)\right]\cdot tdt+\frac14\underbrace{\int_\frac\pi2^\pi\sin(t)\cdot\left[1+\cos(t)\right]\cdot(\pi-t)dt}_{\text{令}\pi-t=u进行换元,记得换元三换}\\ &=\frac14\int_0^\frac\pi2\sin(t)\cdot\left[1+\cos(t)\right]\cdot tdt+\frac14\underbrace{\int_{\frac{\pi}{2}}^{0} \sin(\pi - u) (1 + \cos(\pi - u)) u \cdot (-du)}_{\text{利用诱导公式化简}}\\ &=\frac14\int_0^\frac\pi2\sin(t)\cdot\left[1+\cos(t)\right]\cdot tdt+\frac14\int_0^{\frac{\pi}{2}} \sin(u) (1 - \cos(u)) u \cdot du\\ &=\frac14\left[\int_0^\frac\pi2 t\cdot\sin(t)\left[1+\cos(t)+1-\cos(t)\right]dt\right]\\ &=\frac12\underbrace{\int_0^\frac\pi2 t\cdot\sin(t)dt}_{\text{表格法快速求积}}\\ &=\frac12\left[\sin(t)-t\cdot\cos(t)\right]|_{0}^{\frac\pi2}\\ &=\frac12 \end{aligned} ∫01xarcsin1−(2x−1)2dx=∫π02(1+cos(t))⋅arcsin(sin(t))⋅(−2sin(t))dt=利用定积分性质交换上下限 −41∫π0sin(t)⋅[1+cos(t)]⋅arcsin(sin(t))dt=41∫0πsin(t)⋅[1+cos(t)]⋅t∈/[−2π,2π],分区间讨论 arcsin(sin(t))dt=41∫02πsin(t)⋅[1+cos(t)]⋅arcsin(sin(t))dt+41∫2ππsin(t)⋅[1+cos(t)]⋅在[2π,π],t=π−arcsin(y) arcsin(sin(t))dt=41∫02πsin(t)⋅[1+cos(t)]⋅tdt+41令π−t=u进行换元,记得换元三换 ∫2ππsin(t)⋅[1+cos(t)]⋅(π−t)dt=41∫02πsin(t)⋅[1+cos(t)]⋅tdt+41利用诱导公式化简 ∫2π0sin(π−u)(1+cos(π−u))u⋅(−du)=41∫02πsin(t)⋅[1+cos(t)]⋅tdt+41∫02πsin(u)(1−cos(u))u⋅du=41[∫02πt⋅sin(t)[1+cos(t)+1−cos(t)]dt]=21表格法快速求积 ∫02πt⋅sin(t)dt=21[sin(t)−t⋅cos(t)]∣02π=21