算法竞赛进阶指南.次小生成树
题目
356. 次小生成树
算法标签: K r u s k a l Kruskal Kruskal, M S T MST MST, 倍增优化, l c a lca lca
思路
因为要求的是严格次小生成树, 假设最小生成树的和为 s s s, 遍历每一个非树边 e e e, 那么最后答案就是 min ( s + e . w − v ) \min (s + e.w - v) min(s+e.w−v), v v v是当前非树边的路径上最长的边
如果最长边是最小生成树的边, 使用次长边, 因此需要处理两个数组 d 1 d1 d1, d 2 d2 d2分别代表最长边和次长边, 算法时间复杂度 O ( E log E ) O(E\log E) O(ElogE)
代码
#include <iostream>
#include <algorithm>
#include <cstring>
#include <vector>using namespace std;typedef long long LL;
const int N = 1e5 + 10, M = 6e5 + 10, K = 18;
const int INF = 0x3f3f3f3f;int n, m;
struct Edge {int u, v, w;bool is_tr = false;bool operator< (const Edge &e) const {return w < e.w;}
} edges[M];
int head[N], ed[N << 1], ne[N << 1], w[N << 1], idx;
int fa[N][K], depth[N];
int d1[N][K], d2[N][K];
int p[N];int find(int x) {if (p[x] != x) p[x] = find(p[x]);return p[x];
}void add(int u, int v, int val) {ed[idx] = v, ne[idx] = head[u], w[idx] = val, head[u] = idx++;
}LL kruskal() {sort(edges, edges + m);for (int i = 0; i <= n; ++i) p[i] = i;LL res = 0;for (int i = 0; i < m; ++i) {auto &[u, v, w, is_tr] = edges[i];int fa1 = find(u), fa2 = find(v);if (fa1 == fa2) continue;res += w;p[fa2] = fa1;is_tr = true;add(u, v, w), add(v, u, w);}return res;
}void bfs() {int q[N], h = 0, t = -1;q[++t] = 1;memset(depth, 0x3f, sizeof depth);depth[0] = 0, depth[1] = 1;while (h <= t) {int u = q[h++];for (int i = head[u]; ~i; i = ne[i]) {int v = ed[i];if (depth[u] + 1 < depth[v]) {depth[v] = depth[u] + 1;q[++t] = v;fa[v][0] = u;d1[v][0] = w[i];d2[v][0] = -INF;for (int k = 1; k < K; ++k) {int mid = fa[v][k - 1];fa[v][k] = fa[mid][k - 1];int arr[4] = {d1[v][k - 1],d2[v][k - 1],d1[mid][k - 1],d2[mid][k - 1]};int val1 = -INF, val2 = -INF;for (int j = 0; j < 4; ++j) {if (arr[j] > val1) val2 = val1, val1 = arr[j];else if (arr[j] > val2 && arr[j] < val1) val2 = arr[j];}d1[v][k] = val1;d2[v][k] = val2;}}}}
}int lca(int u, int v, int val) {if (depth[u] < depth[v]) swap(u, v);vector<int> vec;for (int k = K - 1; k >= 0; --k) {if (depth[fa[u][k]] >= depth[v]) {vec.push_back(d1[u][k]);vec.push_back(d2[u][k]);u = fa[u][k];}}if (u != v) {for (int k = K - 1; k >= 0; --k) {if (fa[u][k] != fa[v][k]) {vec.push_back(d1[u][k]);vec.push_back(d2[u][k]);vec.push_back(d1[v][k]);vec.push_back(d2[v][k]);u = fa[u][k], v = fa[v][k];}}vec.push_back(d1[u][0]);vec.push_back(d2[u][0]);vec.push_back(d1[v][0]);vec.push_back(d2[v][0]);}int val1 = -INF, val2 = -INF;for (int t : vec) {if (t > val1) val2 = val1, val1 = t;else if (t > val2) val2 = t;}if (val1 < val) return val1;if (val1 == val) return val2;return -INF;
}int main() {ios::sync_with_stdio(false);cin.tie(0), cout.tie(0);memset(head, -1, sizeof head);cin >> n >> m;for (int i = 0; i < m; ++i) {int u, v, w;cin >> u >> v >> w;edges[i] = {u, v, w};}LL sum = kruskal();bfs();LL ans = 1e18;for (int i = 0; i < m; ++i) {auto &[u, v, w, is_tr] = edges[i];if (is_tr) continue;ans = min(ans, sum + w - lca(u, v, w));}cout << ans << "\n";return 0;
}
*警示后人
因为求的是严格次小生成树, 因此在计算的时候不是arr[j] > val2
而是arr[j] > val2 && arr[j] < val1
, 否则求出的就不是严格的了